gas furnace working 的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

gas furnace working 的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦巴德純 主編 雷震霖 張振厚 張世偉 劉坤 副主編寫的 真空與表面工程:第十屆國際真空冶金與表面工程學術會議、2011年真空工程學術會議、2011年真空咨詢工作會議學術論文集(英文版) 可以從中找到所需的評價。

國立高雄科技大學 化學工程與材料工程系 蔡政賢、賴怡潔所指導 曾安裕的 微波常壓電漿火炬低溫轉化三水鋁石為氧化鋁之研究 (2021),提出gas furnace working 關鍵因素是什麼,來自於微波、電漿、三水鋁石、氧化鋁。

而第二篇論文中原大學 土木工程學系 王雅玢、江政傑所指導 王丹的 應用常壓微波電漿技術於轉化農業廢棄物為有價材料以支持循環經濟和減少碳排放之潛力探討 (2021),提出因為有 生物炭、吸附劑、複合催化劑、回收方法、循環經濟、減少碳排的重點而找出了 gas furnace working 的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了gas furnace working ,大家也想知道這些:

真空與表面工程:第十屆國際真空冶金與表面工程學術會議、2011年真空工程學術會議、2011年真空咨詢工作會議學術論文集(英文版)

為了解決gas furnace working 的問題,作者巴德純 主編 雷震霖 張振厚 張世偉 劉坤 副主編 這樣論述:

本書精選了60余篇代表真空冶金與表面工程領域的最新進展的學術文章,其中包括2011年第十屆國際真空冶金與表面工程學術會議(2011年5月22日~26日在東北大學召開)來自國內外著名學者、專家的大會特邀報告,以及來自全國高等院校和科研院所的學術論文。內容圍繞緊緊真空工程與表面技術的主題,本書可供相關領域的科研人員和技術人員參考。

微波常壓電漿火炬低溫轉化三水鋁石為氧化鋁之研究

為了解決gas furnace working 的問題,作者曾安裕 這樣論述:

α-Al2O3具備高硬度、絕緣性佳及高溫熱穩定性,因此被廣泛應用於各領域當中。傳統製備α-Al2O3的方法大多需要較高的反應溫度且較長的反應時間,缺乏簡單有效的方法。本研究因此以以三水鋁石(Gibbsite, α-Al(OH)3)作為反應物,利用常壓微波電漿(Atmospheric-pressure Microwave Plasma)火炬煅燒製成α-Al2O3。氣體分子或游離的粒子間產生磨擦,電漿內的熱傳速率增加,溫度於短時間上升,使鋁化合物產生前驅體,再聚集排列成氧化鋁,相較傳統製備方法,有反應速度、低溫且轉化率較佳等優點。常壓微波電漿依不同反應溫度(700~850 ℃)、電漿功率(900

~1300 W)、進流氣體種類(N2, O2, Ar)、進流氣體總流量(12~14 slm)、反應時間(1~5 min)等實驗參數,產生電漿火炬煅燒三水鋁石轉化成氧化鋁,再以X光繞射分析儀、電子顯微鏡及比表面積分析儀進行分析。結果顯示:電漿系統通入中心氣體 4 slm 氮氣與旋進氣體 8 slm 氬氣,輸出功率 1300 W,調控反應溫度於 850 ℃ 恆溫煅燒 1min,即可將三水鋁石轉化成高純度的 α-Al2O3。管狀高溫爐於氮氣環境下,以升溫速率 10 ℃/min 加熱至反應溫度 1150 ℃ 煅燒三水鋁石120 min可轉化成 α-Al2O3。相較於傳統煅燒法需將溫度提高至1150 ℃

恆溫煅燒120 min才能製得成 α-Al2O3,電漿煅燒三水鋁石僅需以850 ℃ 恆溫煅燒 1min即可轉化成高純度的α-Al2O3。電漿煅燒法所需的煅燒溫度及反應時間低相當多,為效率極高之方法。

應用常壓微波電漿技術於轉化農業廢棄物為有價材料以支持循環經濟和減少碳排放之潛力探討

為了解決gas furnace working 的問題,作者王丹 這樣論述:

臺灣每年產生約500萬公噸的農業廢棄物。然而,由於再利用方法不當,約有30%的可重複利用資源被浪費且造成污染,導致空氣污染更加嚴重,且經濟效益不彰。本研究在氮氣環境中應用常壓微波電漿技術,在7、9和11公升/分鐘的三個單獨流速下,通過合成生物炭和二氧化鈦,產出可在可見光下應用之生物炭吸附劑和複合催化劑。研究中也透過生物炭產品效益成本比和環境影響分析,與現有的回收方法進行比較。研究中利用電漿熱裂解技術,通過熱裂解稻草、阿勃勒和稻殼廢棄物成功製備了高品質的生物炭。研究結果顯示使用電漿熱裂解技術可以增加約1.91-6.05倍的表面積,而且速度比傳統鍋爐快3-36倍。以電漿氣體流速為11公升/分鐘製

備的阿勃勒生物炭,以及使用流速7公升/分鐘的稻草生物炭,在所有生物炭中具有最高的吸附能力,分別為344.82毫克/克和188.32毫克/克,較文獻中的吸附量分別提高10.6倍和2.07倍,而熱解時間則是分別縮短24倍和48倍。動力吸附實驗結果則與Langmuir模型非常吻合,吸附動力遵循擬二階動力吸附模式。在光催化氧化實驗中,在9公升/分鐘的電漿氣體流速,生物炭/二氧化鈦1:1的比例下,所生產的生物炭複合催化劑表現出最高的活性,其脫色效率分別為83.60%、69.51%和50.87%。此外,根據效益-成本分析結果,利用電漿技術生成稻殼生物炭的回收方法顯示出具有盈利潛力,其效益-成本比大於1。最

後根據碳排分析,電漿系統產生的生物炭的二氧化碳當量為394.331 Kg CO2eq/噸,而根據文獻以掩埋方式處理之二氧化碳當量約為1,260 Kg CO2eq/噸,因此本研究結果證明以電漿法再利用農業廢棄物優於現場掩埋方法,可更有效率降低碳排。