二氧化鉬的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

二氧化鉬的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦張玉清等寫的 聚雙環戊二烯及其改性 可以從中找到所需的評價。

國立虎尾科技大學 光電工程系光電與材料科技碩士班 鄭錦隆所指導 廖偉程的 應用於串接太陽能電池之氧化銦錫與負型矽介面特性提升研究 (2021),提出二氧化鉬關鍵因素是什麼,來自於氧化銦錫、負型矽、串聯電阻、蕭基能障、串接 太陽能電池。

而第二篇論文國立虎尾科技大學 光電工程系光電與材料科技碩士班 鄭錦隆所指導 黃麒安的 應用於串接太陽能電池之底部具氧化鉬電洞選擇性接觸層單晶矽太陽能電池之研究 (2021),提出因為有 氧化銦錫、氮化矽、射頻磁控濺鍍、單晶矽太陽能電池、串接太陽能電池的重點而找出了 二氧化鉬的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了二氧化鉬,大家也想知道這些:

聚雙環戊二烯及其改性

為了解決二氧化鉬的問題,作者張玉清等 這樣論述:

本書主要是對作者近十年以來研究內容的總結。首先對聚雙環戊二烯的性能、應用及行業現狀進行了概述,然後介紹了其開環易位聚合反應的催化體系,繼而分別從共聚改性、聚合共混改性、無機粒子改性、纖維增強改性、阻燃改性等方面對聚雙環戊二烯的改性進行闡述,最後介紹了發泡聚雙環戊二烯。 本書對於從事聚雙環戊二烯材料研發及其改性的技術人員有很好的參考價值。

應用於串接太陽能電池之氧化銦錫與負型矽介面特性提升研究

為了解決二氧化鉬的問題,作者廖偉程 這樣論述:

本研究論文探討應用於串接太陽能電池之氧化銦錫與負型矽介面特性提升研究,由於氧化銦錫與負型矽的功函數差,使得氧化銦錫與負型矽介面間存在著較高的蕭基能障,因此造成很大的串聯電阻,故本研究擬導入各種金屬於氧化銦錫與負型矽介面降低串聯電阻,導入的金屬有銦、銀、鋁與鋁 /氟化鋰堆疊層,首先,透過 Transfer Length Method (TLM)量測技術,探討各種金屬對接觸電阻的影響,金屬厚度效應亦同時探討,接著利用逆偏電容 -電壓量測及順偏電流 -電壓量測,計算各種介面的蕭基能障高度,最後將前述實驗的最佳參數導入單晶 矽太陽能電池元件,透過不同參數的調整,比較太陽能電池的各種光電特性如光電轉換

效率、開路電壓、短路電流、填充因子與串聯電阻等。實驗結果顯示,對於各種金屬導入氧化銦錫與負型矽介面,金屬鋁 /氟化鋰堆疊層與負型矽介面的結構下,其氟化鋰與金屬鋁厚度分別為 3 nm與 200 nm,負型矽片電阻為123.98  /sq,可得到最佳的接觸電阻為 9.76 × 10-4  -cm2,蕭基能障高度實驗結果顯示當導入氟化鋰與金屬鋁於氧化銦錫與負型矽介面時其蕭基能障高度降為 0.423 eV,最後將各種最佳參數導入太陽能電池的製作, 實驗結果顯示,在金屬銀 /氧化銦錫 /堆疊層與負型矽介面結構下,其光電轉換效率為 11.57 %、開路電壓為 588 mV、短路電流為 28.5 mA/

cm2、填充因子為 68.88 %及串聯電阻為 4.06  -cm2。當導入金屬銀於氧化銦錫與負型矽介面時,其光電轉換效率最佳增加至 13.26 %、開路電壓為 607 mV、短路電流為28.92 mA/cm2、填充因子為 76.12 %及串聯電阻為 2.3  -cm2。

應用於串接太陽能電池之底部具氧化鉬電洞選擇性接觸層單晶矽太陽能電池之研究

為了解決二氧化鉬的問題,作者黃麒安 這樣論述:

本論文研究應用於串接太陽能電池之底部具氧化鉬電洞選擇性接觸層單晶矽太陽能電池之研究之光電特性研究,串接太陽能電池結構中,氧化銦錫為其重要的連接層,因此藉由改善連接層與矽基板的介面特性,進一步增加串接太陽能電池底部元件的光電轉換效率,首先探討濺鍍功率及時間對具氧化銦錫太陽能電池的光電特性影響,接著改變預濺鍍時間、前處理方法、工作壓力及氧流量對氧化銦錫與負型矽射極介面特性之影響,同時利用網印與濕式蝕刻技術,改變氮化矽與氧化銦錫不同比率,探討對單晶矽太陽能電池的光電特性影響,最後利用掃描電子顯微鏡、霍爾量測、紫外/可見/紅外光譜儀與紫外光光電子光譜儀量測其ITO厚度、電子移動率、電阻率、穿透率、能

隙及功函數等特性。實驗結果顯示,在元件結構為Ag/ITO/n-Si(100)/p-Si(100)/MoO2/Ag情況下,濺鍍功率由30 W增加至60 W時,其光電轉換效率隨著功率增加而增加,當功率為55 W搭配30分鐘時可獲得最佳光電轉換效率為12.9 %,再增加功率其光電轉換效率會下降,預鍍時間從1分鐘變化至10分鐘,當預鍍時間為5分鐘可獲的最佳轉換效率,兩種前處理為只有BOE及BOE搭配DHF情況下,以只有BOE前處理可獲得最佳光電轉換效率,在3至9 mtorr工作壓力範圍下,以工作壓力7 mtorr為最佳,當氧流量比值O2/(O2+Ar)從0至16.7 %變動時,以無添加氧濺鍍時可獲得最

佳效果,當氮化矽與氧化銦錫比率從0至25 %變化時,在完全將氮化矽去除時可獲得最佳結果。綜合上述實驗結果,當濺鍍功率為55 W、濺鍍時間為30 min、預濺鍍時間為5分鐘、前處理為BOE、工作壓力為7 mtorr、無添加氧濺鍍、無氮化矽時,最佳光電轉換效率為12.90 %、開路電壓為601 mV、短路電流密度為28.75 mA/cm2、填充因子為74.64 %及串聯電阻為2.86 Ω-cm2。