積分定義的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

積分定義的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦沈淵源寫的 深入淺出細說微積分 和薛定宇的 高等應用數學問題的MATLAB求解(第四版)都 可以從中找到所需的評價。

另外網站在Oppo A54 上解鎖引導加載程序、Root 並安裝自定義ROM也說明:好吧,由於Android 操作系統的開源性質及其廣泛的可定制選項,開發人員和高級用戶都可以很容易地解鎖設備引導加載程序、閃存自定義恢復、閃存自定義固件, ...

這兩本書分別來自三民 和清華大學所出版 。

國立雲林科技大學 電機工程系 毛偉龍所指導 高鈞毓的 分數階模糊PID控制器使用演化式計算於龍門同動平台應用 (2021),提出積分定義關鍵因素是什麼,來自於永磁線性同步馬達、龍門式同動XY平台、分數階PID控制器、模糊PID控制器、Oustaloup濾波器、粒子群最佳化演算法、雜草入侵演算法、灰狼優化演算法、生物地理學演算法、絕對誤差積分準則、非均勻有理B雲規、軌跡追蹤。

而第二篇論文國立成功大學 化學工程學系 黃世宏所指導 趙致平的 基於繼電器測試之分數階系統鑑別與PIλDμ控制器設計 (2020),提出因為有 分數階系統、繼電器回饋、分數一階時延模型、PIλDμ控制器的重點而找出了 積分定義的解答。

最後網站微分積分学の基本定理とその証明|微分と積分の関係を導出則補充:この定義では微分を全く用いずに定義されるため,高校数学であまり扱わない不連続関数の積分にも対応することができます. しかし,実際にRiemann積分を ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了積分定義,大家也想知道這些:

深入淺出細說微積分

為了解決積分定義的問題,作者沈淵源 這樣論述:

  微積分是科學研究的基礎,我們要談如何以分析的方法來研究變動中的事物。   包括四個主要的大課題:連續性、微分法、積分法還有級數之收斂性。原理與計算並重。   前面探討單變數微分之觀念及應用、再加積分之觀念,中間繼續探究積分之應用並談級數之收斂性,最後探索多變數微積分。  

積分定義進入發燒排行的影片

【摘要】
本影片利用了定積分的定義證明 Dirichlet 函數在 [a,b] 上不可積

【勘誤】
無,若有發現任何錯誤,歡迎留言告知

【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews

【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus

【附註】
本影片適合理、工學院學生觀看
商、管學院學生當參考

【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join

【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd

【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)

【積分篇】
重點一:定積分直觀觀念 (https://youtu.be/gOuE68S3kXw)
重點二:奇偶函數的積分 (https://youtu.be/-UOnX6PWogc)

重點三:定積分正式定義 (https://youtu.be/9igA5vuk5Zc)
├ 精選範例 3-1 (https://youtu.be/3TMV6mxhjFc)
└ 精選範例 3-2 👈 目前在這裡

重點四:積分運算性質 (https://youtu.be/WOyCaUMVmbw)
重點五:微積分基本定理 I (https://youtu.be/T3o_OU2J9ss)
重點六:不定積分與反導函數 (https://youtu.be/fJhHZ9Hk1ec)
重點七:雙曲函數 (https://youtu.be/gfjGpy-pNIs)
重點八:積分表 (沒有講解影片)
重點九:四大積分基本方法之一:變數變換法 (https://youtu.be/trMid_t8_us)
重點十:四大積分基本方法之二:三角置換法 (https://youtu.be/VL--z89nYBs)
重點十一:四大積分基本方法之三:分部積分法 (https://youtu.be/VwUK8_JAuwk)
重點十二:積分表 (沒有講解影片)
重點十三:四大積分基本方法之四:部份分式法 (https://youtu.be/FDxrP8FT3yE)

【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)

張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd

【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math

【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM

【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)

#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享

分數階模糊PID控制器使用演化式計算於龍門同動平台應用

為了解決積分定義的問題,作者高鈞毓 這樣論述:

針對高加速、高推力和高剛性的需求之平台,為了增加單一軸向的推力,利用龍門式雙軸同動平台架構來做軌跡運動控制。龍門式定位平台系統採用雙平行線性馬達共同驅動單軸之平行系統,若在高速運動下而各軸伺服系統之間的同步誤差過大,則會因為機構耦合的關係而導致兩邊的驅動軸機構之間產生拉扯的力量,進而造成機構變形或損毀。因此如何有效的精準驅動工作平台達成同步運動,會是一個很重要的議題。本論文提出了利用分數階模糊PID控制器搭配Oustaloup濾波器對龍門式同動XY平台進行控制。控制器參數是使用ITAE為基準,並利用粒子群最佳化演算法、雜草入侵演算法、灰狼優化演算法及生物地理學演算法,共四種演算法去進

行最佳化參數的搜尋。在模擬系統模型中,使用了重疊定理並利用MATLAB系統鑑別工具來找出線性永磁同步馬達的系統轉移函數。模擬時依照此篇所提出的控制方法、最佳化演算法、找出的系統轉移函數並且配合軌跡的命令,來搜尋控制軌跡的共同控制參數,再將該參數套入控制架構中來模擬XY平台的軌跡控制。 實作時依據模擬中所找出的共同參數對實體XY平台進行軌跡的測試。模擬和實作系統環境皆以MATALB系統為主,在模擬與實作方面也使用MATLAB的Simulink Embedded function的方法。所做的軌跡測試使用NURBS軌跡,軌跡分別為圓形、蝴蝶結、心形和星形。在模擬和實際的結果來看,XY平台的軌

跡追蹤皆呈現出很好的追蹤情形。實作結果的平均追蹤誤差和追蹤誤差之標準差數據顯示都有很好的結果。

高等應用數學問題的MATLAB求解(第四版)

為了解決積分定義的問題,作者薛定宇 這樣論述:

本書首先介紹MATLAB語言程式設計的基本內容,在此基礎上系統介紹各個應用數學領域的問題求解,如基於MATLAB的微積分問題、線性代數問題的計算器求解、積分變換和複變函數問題、非線性方程與最優化問題、常微分方程與偏微分方程問題、資料插值與函數逼近問題、概率論與數理統計問題的解析解和數值解法等;還介紹了較新的非傳統方法,如模糊邏輯與模糊推理、神經網路、遺傳演算法、小波分析、粗糙集及分數階微積分學等領域。   本書可作為一般讀者學習和掌握MATLAB語言的教科書,高等學校理工科各類專業的本科生和研究生學習電腦數學語言的教材或參考書,可供科技工作者、教師學習和應用MATLAB語言解決實際數學問題時參

考,還可作為讀者查詢某數學問題求解方法的手冊。 第1 章電腦數學語言概述1 11數學問題電腦求解概述1 111為什麼要學習電腦數學語言1 112數學問題的解析解與數值解4 113數學運算問題套裝軟體發展概述4 114常規電腦語言的局限性5 12電腦數學語言簡介7 121電腦數學語言的出現7 122有代表性的電腦數學語言7 13關於本書及相關內容8 131本書框架設計及內容安排8 132MATLAB語言學習方法與資源9 133本課程與其他相關課程的關係10 134數學問題三步求解方法概述10 14習題11參考文獻12 第2章MATLAB語言程式設計基礎13 21MATLAB程

式設計語言基礎14 211MATLAB語言的變數與常量14 212資料結構14 213MATLAB的基本語句結構16 214冒號運算式與子矩陣提取17 22基本數學運算18 221矩陣的代數運算18 222矩陣的邏輯運算19 223矩陣的比較運算20 224解析結果的化簡與變換20 225基本離散數學運算21 23MATLAB語言的流程結構23 231迴圈結構23 232條件轉移結構24 ·VIII·高等應用數學問題的MATLAB求解(第四版) 233開關結構24 234試探結構25 24函數編寫與調試25 241MATLAB語言函數的基本結構26 242可變輸入輸出個數的處理28 243匿名

函數與inline函數29 244偽代碼與代碼保密處理29 25二維圖形繪製30 251二維圖形繪製基本語句30 252多縱軸曲線的繪製32 253其他二維圖形繪製語句32 254隱函數繪製及應用34 255圖形修飾34 256資料檔案的讀取與存儲36 26三維圖形表示37 261三維曲線繪製37 262三維曲面繪製38 263三維圖形視角設置41 264參數方程的表面圖42 265球面與柱面繪製43 266等高線繪製44 267三維隱函數圖繪製45 268三維曲面的旋轉46 27四維圖形繪製47 28習題48參考文獻52 第3章微積分問題的電腦求解53 31極限問題的解析解53 311單變數

函數的極限53 312區間函數的極限運算55 313多元函數的極限57 32函數導數的解析解58 321函數的導數和高階導數58 322多元函數的偏導數59 323多元函數的Jacobi矩陣與Hessian矩陣60 324參數方程的導數62 325隱函數的偏導數62 326場的梯度、散度與旋度63 33積分問題的解析解64 331不定積分的推導64 332定積分與無窮積分計算65 333多重積分問題的MATLAB求解66 34函數的級數展開與級數求和問題求解67 341Fourier級數展開67 342Taylor冪級數展開69 343級數求和的計算72 344序列求積問題73 345無窮級數

的收斂性判定74 35曲線積分與曲面積分的計算76 351曲線積分及MATLAB求解76 352曲面積分與MATLAB語言求解78 36數值微分問題80 361數值微分演算法81 362中心差分方法及其MATLAB實現81 363二元函數的梯度計算82 37數值積分問題83 371由給定資料進行梯形求積84 372單變數數值積分問題求解85 373廣義數值積分問題求解88 374積分函數的數值求解89 375雙重積分問題的數值解89 376三重定積分的數值求解92 377多重積分數值求解93 38習題94參考文獻98 第4章線性代數問題的電腦求解99 41特殊矩陣的輸入99 411 數值矩陣的

輸入 100 412 疏鬆陣列的輸入 103 413 符號矩陣的輸入 104 42 矩陣基本分析 105 421 矩陣基本概念與性質 105 ·X·高等應用數學問題的MATLAB求解(第四版) 422 逆矩陣與廣義逆矩陣 111 423 矩陣的特徵值問題 114 43 矩陣的基本變換與分解 116 431 矩陣的相似變換與正交矩陣 116 432矩陣的三角分解和Cholesky分解117 433矩陣的相伴變換、對角變換和Jordan變換121 434 矩陣的奇異值分解 125 44 矩陣方程的電腦求解 126 441 線性方程組的電腦求解 126 442 Lyapunov 方程的電腦求解 12

9 443 Sylvester 方程的電腦求解 131 444 Diophantine 方程的求解 133 445Riccati方程的電腦求解134 45 非線性運算與矩陣函數求值 135 451 面向矩陣元素的非線性運算 135 452 矩陣函數求值 136 453 一般矩陣函數的運算 138 454 矩陣的乘方運算 141 46 習題 142 參考文獻 147 第5章積分變換與複變函數問題的求解149 51Laplace變換及其反變換149 511Laplace變換及反變換的定義與性質149 512Laplace變換的電腦求解150 513Laplace變換問題的數值求解152 52 Fo

urier 變換及其反變換 155 521 Fourier 變換及反變換定義與性質 155 522 Fourier 變換的電腦求解 156 523 Fourier 正弦和余弦變換 157 524離散Fourier正弦、余弦變換158 525快速Fourier變換158 53 其他積分變換問題及求解 159 531Mellin變換159 532 Hankel 變換及求解 161 54 z 變換及其反變換 162 541 z 變換及反變換定義與性質 162 542 z 變換的電腦求解 163 543 雙邊z 變換 164 544 有理函數z 反變換的數值求解 164 55 複變函數問題的電腦求解

165 551 複數矩陣及其變換 165 552 複變函數的映射 165 553Riemann面繪製166 56 複變函數問題的求解 167 561 留數的概念與計算 167 562 有理函數的部分分式展開 169 563基於部分分式展開的Laplace反變換173 564 Laurent 級數展開 173 565 封閉曲線積分問題計算 176 57 差分方程的求解 178 571 一般差分方程的解析求解方法 178 572 線性時變差分方程的數值解法 179 573 線性時不變差分方程的解法 180 574 一般非線性差分方程的數值求解方法 182 58 習題 182 參考文獻 186 第6

章代數方程與最優化問題的電腦求解187 61 代數方程的求解 187 611 代數方程的圖解法 187 612 多項式型方程的准解析解法 188 613 一般非線性方程數值解 191 614 求解多解方程的全部解 193 615 更高精度的求根方法 196 616 欠定方程的求解 198 62 無約束最優化問題求解 199 621 解析解法和圖解法 199 622基於MATLAB的數值解法200 623 全域最優解與全域最優解法 202 624 利用梯度求解最優化問題 204 625 帶有變數邊界約束的最優化問題求解 205 63 有約束最優化問題的電腦求解 205 631 約束條件與可行解區

域 206 ·XII·高等應用數學問題的MATLAB求解(第四版) 632 線性規劃問題的電腦求解 207 633 二次型規劃的求解 211 634 一般非線性規劃問題的求解 211 635 一般非線性規劃問題的全域最優解嘗試 215 64 混合整數規劃問題的電腦求解 215 641 整數規劃問題的窮舉方法 216 642 整數線性規劃問題的求解 217 643 一般非線性整數規劃問題與求解 218 6440–1規劃問題求解221 645 指派問題的求解 222 65 線性矩陣不等式問題求解 223 651 線性矩陣不等式的一般描述 223 652 Lyapunov 不等式 224 653 線

性矩陣不等式問題分類 225 654線性矩陣不等式問題的MATLAB求解226 655基於YALMIP工具箱的最優化求解方法228 66 多目標優化問題求解 229 661 多目標優化模型 229 662 無約束多目標函數的最小二乘求解 230 663 多目標問題轉換為單目標問題求解 230 664多目標優化問題的Pareto解集233 665 極小極大問題求解 234 666 目標規劃問題求解 235 67 動態規劃及其在路徑規劃中的應用 236 671 圖的矩陣表示方法 236 672 有向圖的路徑尋優 236 673 無向圖的路徑最優搜索 239 674 絕對座標節點的最優路徑規劃演算法

與應用 240 68 習題 240 參考文獻 245 第7 章微分方程問題的電腦求解 71 常係數線性微分方程的解析解方法 247 711 線性常係數微分方程解析解的數學描述 247 712 微分方程的解析解方法 248 713 線性狀態空間方程的解析解 251 714 特殊非線性微分方程的解析解 252 72 微分方程問題的數值解法 252 721 微分方程問題演算法概述 253 722四階定步長Runge–Kutta演算法及MATLAB實現254 723 一階微分方程組的數值解 255 724 微分方程數值解的驗證 258 73 微分方程轉換 259 731 單個高階常微分方程處理方法 2

59 732 高階常微分方程組的變換方法 260 733 矩陣微分方程的變換與求解方法 263 74 特殊微分方程的數值解 265 741 剛性微分方程的求解 266 742 隱式微分方程求解 268 743 微分代數方程的求解 271 744 切換微分方程的求解 272 745 隨機線性微分方程的求解 273 75 延遲微分方程求解 276 751 典型延遲微分方程的數值求解 276 752 變時間延遲微分方程的求解 277 753 中立型延遲微分方程的求解 279 76 邊值問題的電腦求解 280 77 偏微分方程求解入門 283 771 偏微分方程組求解 283 772 二階偏微分方程的

數學描述 284 773 偏微分方程的求解介面應用舉例 286 78基於Simulink的微分方程框圖求解291 781 Simulink 簡介 291 782 Simulink 相關模組 292 783微分方程的Simulink建模與求解293 79 習題 300 參考文獻 304 第8章資料插值、函數逼近問題的電腦求解305 81 插值與數據擬合 305 811 一維資料的插值問題 305 812 已知樣本點的定積分計算 308 813 二維網格資料的插值問題 309 814 二維散點分佈資料的插值問題 311 ·XIV·高等應用數學問題的MATLAB求解(第四版) 815 高維插值問題

313 816 基於樣本資料點的離散最優化問題求解 315 82 樣條插值與數值微積分問題求解 315 821樣條插值的MATLAB表示316 822 基於樣條插值的數值微積分運算 319 83 由已知數據擬合數學模型 321 831 多項式擬合 321 832 函數線性組合的曲線擬合方法 323 833 最小二乘曲線擬合 325 834 多變數函數的最小二乘函數擬合 326 84 已知函數的有理式逼近方法 327 841 給定函數的連分式展開及基於連分式的有理近似 327 842有理式擬合——Padé近似330 843 給定函數的特殊多項式近似 332 85 特殊函數及曲線繪製 333 85

1 誤差函數與補誤差函數 334 852Gamma函數335 853Beta函數336 854Bessel函數337 855Legendre函數338 856 超幾何函數 338 86Mittag-Leer函數340 87 信號分析與數位信號處理基礎 344 871 信號的相關分析 344 872 信號的功率譜分析 345 873 濾波技術與濾波器設計 346 88 習題 350 參考文獻 352 第9章概率論與數理統計問題的電腦求解353 91 概率分佈與偽亂數產生 353 911 概率密度函數與分佈函數概述 353 912 常見分佈的概率密度函數與分佈函數 353 913 亂數與偽亂數產生

360 92 概率問題的求解 360 921 離散資料的長條圖與圓形圖表示 360 922 連續事件的概率計算 362 923基於MonteCarlo法的數學問題求解363 924 隨機遊走過程的模擬 364 93 基本統計分析 365 931 隨機變數的均值與方差 365 932 隨機變數的矩 366 933 多變數亂數的協方差分析 367 934 多變數正態分佈的聯合概率密度函數及分佈函數 368 935 離群值、四分位數與盒子圖 369 94 數理統計分析方法及電腦實現 371 941 參數估計與區間估計 371 942 多元線性回歸與區間估計 373 943 非線性函數的最小二乘參數

估計與區間估計 374 944 極大似然估計 377 95 統計假設檢驗 377 951 統計假設檢驗的概念及步驟 377 952 隨機分佈的假設檢驗 379 96 方差分析與主成分分析 382 961 方差分析 382 962 主成分分析 385 97 習題 387 參考文獻 390 第10章數學問題的非傳統解法391 101 集合論、模糊集與模糊推理 391 1011經典可枚舉集合論問題及MATLAB求解391 1012 模糊集合與隸屬度函數 393 1013模糊推理系統及其MATLAB求解396 102 粗糙集理論與應用 400 1021 粗糙集理論簡介 400 1022 粗糙集的基本概

念 401 1023 資訊決策系統 401 1024粗糙集資料處理問題的MATLAB求解403 1025粗糙集約簡的MATLAB程式介面405 103 人工神經網路及其在資料擬合中的應用 405 1031 神經網路基礎知識 406 1032 前饋型神經網路 407 1033 徑向基網路結構與應用 414 ·XVI·高等應用數學問題的MATLAB求解(第四版) 1034 神經網路介面 416 104 進化演算法及其在最優化問題中的應用 419 1041遺傳演算法的基本概念及MATLAB實現419 1042 遺傳演算法在求解最優化問題中的應用舉例 420 1043 遺傳演算法在有約束最優化問題中的

應用 424 1044 粒子群優化演算法與求解 426 1045 其他全域優化演算法 427 1046 求取精確的全域最優解 428 105 小波變換及其在資料處理中的應用 429 1051 小波變換及基小波波形 429 1052 小波變換技術在信號處理中的應用 432 1053 小波問題的程式介面 435 106 分數階微積分學問題的數值運算 435 1061 分數階微積分的定義 436 1062 不同分數階微積分定義的關係與性質 437 1063 分數階微積分的計算方法 438 1064 分數階微分方程的求解方法 444 1065 基於框圖的非線性分數階微分方程近似解法 448 107 習

題 453 參考文獻 455 MATLAB函數名索引457 術語索引463 科學運算問題是科學與工程中的重要問題。在當前一般高校理工科課程設置中,高等數學、線性代數、概率論與數理統計等為必修課程,有些專業還有複變函數、積分變換、最優化、數值分析等選修課程。有了這些數學基礎,很多專業課程相應的數學模型就可以建立起來了,而這些數學問題的求解就成了不容回避的問題了。 在總結多年實際教學經驗的基礎上,作者曾在首屆MathWorks亞洲研究與教育峰會(2014年11月,東京)上提出了數學問題的“三步求解方法”,其第一步就是用簡單的語言理解要求解數學問題的物理意義,第二步是如何用電腦

能接受的方式將數學問題輸入給電腦,第三步就是調用恰當的函數將數學問題的解得出來。有了這樣的思路,則普通研究者可以直接利用電腦工具在短時間內解決已經學習過甚至根本沒有學習過的數學分支的應用問題。 本書書名中的“高等應用數學”不等於“高等數學”,而是預期盡可能廣地覆蓋理工科數學分支,其對數學分支的涵蓋範圍是非常廣泛的。書中涉及了大量的數學公式,作者沒有期望讀者能讀懂這些公式,大概理解它們的物理意義就足夠了,側重點還是應該放在學習基於MATLAB的實際求解方法。儘管較好理解數學公式可能對學習數學問題的求解方法有所幫助,但這不是必要的。 雖然數學問題的求解在以後的課程學習與科學研究中是不可避免的,

那些自認為數學基礎比較薄弱的讀者也不必擔心,因為本書介紹的方法是盡可能地避開煩瑣的、深奧的數學,將數學問題及其求解過程用MATLAB能夠接受的形式全盤推給電腦去求解,充分發揮計算機的潛能去替你完成任務,最終收穫問題的解。儘管這樣的方式有時得不到一些數學家的接受與認可,但這對應用科學家與工程技術人員足矣。 比如說,本書介紹了代數方程的求解方法。在實際應用中數學家或其他科研工作者可能面 . 對下麵的代數方程束手無策.x+3y3+2z2=1/2x2+3y+z3=2.x3+2z+2y2=2/4 而你卻完全可以利用本書介紹的方法將該方程推給電腦去求解,在幾秒鐘之內得出原方程全部27組根,將根代入原方程

,誤差可能達到10.34級別。另外,對用戶而言,如果使用工具,求解這樣的方程與求解雞兔同籠方程一樣簡單。 再如,如果已知矩陣A,數學家無法求出複合矩陣函數ψ(A)=eAcosAt或Ak時,你可以輕而易舉地借助電腦得出所需的矩陣函數與乘方的解析解。 可以想像一下,當數學家只能利用其巧妙的構思去判定19931993的個位數是幾的時候,你卻能易如反掌地將其全部6576位元數位都列出來;當數學家在苦思冥想給定的矩陣方程AX+XD.XBXT+C=0到底有多少個根的時候,你卻有能力利用本書的方法將其實數根與複數根一次性地全部求解出來;當數學家津津樂道地描述“(a,b)區間內至少存在一個ξ” ·II·高

等應用數學問題的MATLAB求解(第四版)的時候,你卻能將滿足條件的ξ的所有可能值都精確地實實在在地找出來;當數學家在糾結到底用哪種技巧去求出某個函數的不定積分的時候,你卻能借助電腦在幾秒鐘之內用普通得不能再普通的方法求出該不定積分的解析解;當數學家因為想使用神經網路而苦苦閱讀學習相關知識的時候,你卻能通過幾分鐘基礎概念的學習之後熟練地利用神經網路解決實際問題,你是不是應該建立起對求解實際應用數學問題能力的自信心呢?是不是會有龜兔賽跑中兔子的優越感呢?這樣的例子不勝枚舉,所以不要懼怕數學,因為如果系統地學習掌握了本書中介紹的方法和思路,你求解實際應用數學問題的能力將遠遠超過不會或不擅用電腦工具

的一流數學家。 本書繼承了以前版本的寫作風格,不是按手冊的方式,即MATLAB能求解什麼就介紹什麼,而是按介紹數學理論與系統知識的需求,組織教學材料、求解方法與求解工具,使得讀者有能力直接求解相關的數學問題。如果MATLAB能求解某類問題,作者會直接建議使用現有函數去求解,如果沒有現成函數時,作者會編寫出通用的函數,可以同樣直接地求解這類問題。   本書比較典型的獨到的求解方法包括矩陣的任意非線性函數求解、矩陣任意乘方的求解、任意多解非線性矩陣方程的求解、有約束非線性規劃問題的全域求解方法、分數階微積分的高精度數值計算等,通過實際例子的介紹,同時演示了將求解思路變成代碼的過程與技巧。 從數

學問題解析運算的角度看,由於基於Maple符號運算引擎的MATLABR2008a版本已經淡出了歷史舞臺,本書早期版本中很多內容已經不能正常使用,新版本提供的功能也有待系統地利用與介紹,所以需要一個新的版本。   本書引入的新內容包括三維隱函數等圖形繪製新方法、場論的解析運算、無窮級數的收斂性判定、曲線曲面積分解析運算的通用求解函數、數值積分曲線曲面的繪製、Diophantine方程求解、矩陣任意乘方的計算、數值積分變換方法與應用、Laurent級數展開、非線性矩陣方程的數值解法、非線性規劃問題的全域搜索函數、常微分延遲微分方程的框圖解法、alpha穩定分佈與Lévy飛行、離群值檢測、全新的分數

階微積分高精度計算方法、基於框圖的複雜分數階系統建模與求解通用方法等。本書在不顯著增加本書頁碼的前提下最大限度地壓縮了排版的空間浪費,融入了新的內容,並對使用的語句做出了更詳盡的注釋,使得讀者能更好地理解涉及的代碼,更有效地學習本書的內容。 本書的前幾版在本科生、研究生實際教學中已經使用十餘年,配備了較全面的交互性電腦輔助教學材料,本書相應的課程“現代科學運算——MATLAB語言與應用”目前為遼寧省精品資源分享課程,讀者可以觀看該課程的全程授課視頻,享用全套教學資源,也建議有相關想法的教師在本校開設相應的課程,使得更多的理工科學生受益。英文版教材Scienti. c Computing wi

th MATLAB(第二版)2016年由美國CRC出版社出版,可以作為雙語課程或全英文課程的材料,與此同時,本書全英文課程視頻製作也在計畫之中,預計將在本書正式出版時完成。感謝向日葵教育科技公司李婷女士在視頻製作過程中提供的幫助。 書稿完成之際要感謝的人很多,感謝教學團隊成員的共同努力、學生們在課程建設中所做的扎實的工作、諸多熱心讀者的建議、出版界朋友的辛勤工作,特別地感謝摯愛的家人一如既往的支持與鼓勵。 薛定宇2017年6月

基於繼電器測試之分數階系統鑑別與PIλDμ控制器設計

為了解決積分定義的問題,作者趙致平 這樣論述:

一些真實的物理系統,如電化學領域等,較適合使用分數階微分方程來建立模型,能夠比整數階微分方程得到更精準的系統描述。此外,分數階建模還有一有用特性,即能以簡單低階模型對高階系統提供良好的描述。分數階系統的應用需要大量運算,近年因為電腦運算速度的快速進步,分數階系統逐漸成為重要的研究主題。本論文提出利用繼電器回饋對未知系統進行閉環鑑別,僅需對系統進行一次響應試驗,即可結合輸出入量測和頻率響應原理來獲得系統的分數一階時延模型。在分數階模型已知的情況下,可使用直接合成法進行控制器設計,然而所得的控制器形式相當複雜,不利於實際應用。為解決此問題,本文提出利用最小平方法進行PIλDμ控制器的全域最佳參數

求解,可將複雜控制器轉為簡單的PID形式控制器,其中頻率範圍的選取以及頻率權重的調整,對PIλDμ控制器的設計有重要影響。最後本論文結合兩者提出自動調諧方法,先利用繼電器回饋鑑別出分數一階時延模型,然後根據模型設計適合的PIλDμ控制器。模擬研究顯示,本自動調諧方法對於各種整數階和分數階系統,皆能鑑別出有效的分數階模型,並且所得之PIλDμ控制器具有良好的控制性能。