蛋白質 結構 AI的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

蛋白質 結構 AI的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦水谷淳寫的 超實用.科學用語圖鑑:物理、電、化學、生物、地科、宇宙6大領域讓你一次搞懂136個基礎科學名詞 和黃宣範,連金發,蘇以文,呂佳蓉,馮怡蓁,邱振豪,盧郁安,宋麗梅,鄭奕揚,江文瑜,黃文怡,林智凱,張顯達,徐嘉慧,李佳霖,戴浩一,的 語言學:結構、認知與文化的探索都 可以從中找到所需的評價。

另外網站从预测进化,AI能“构想”新蛋白质结构 - 科技日报也說明:研究人员表示,这是AI网络在解决生物学领域最大的挑战之一——根据氨基酸序列确定蛋白质三维神经网络“幻想”了新蛋白质结构

這兩本書分別來自有方文化 和國立臺灣大學出版中心所出版 。

國立陽明交通大學 生醫科學與工程博士學位學程 趙瑞益所指導 張建仁的 探討臨床抗藥性非小細胞肺癌病人肋膜積液分離的肺癌細胞中EGFR與PD-L1之表現及功能 (2021),提出蛋白質 結構 AI關鍵因素是什麼,來自於非小細胞肺癌、抗藥性、肋膜積水、上皮生長因子接受器。

而第二篇論文國立陽明交通大學 資訊科學與工程研究所 胡毓志所指導 陳冠熙的 利用複合式特徵與堆疊型後設學習法偵測蛋白質交互作用和殘基結合區塊 (2021),提出因為有 蛋白質、胺基酸、蛋白質交互作用、蛋白質結合區塊、複合式特徵、堆疊型後設學習法的重點而找出了 蛋白質 結構 AI的解答。

最後網站AlphaFold预测出35万个蛋白结构?“狂欢” 之余还需冷静則補充:一篇是DeepMind公司公布了其开发的人工智能(AI)软件AlphaFold的源代码,另外一篇称AlphaFold实现了对人类蛋白质组的准确结构预测,其数据集涵盖了 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了蛋白質 結構 AI,大家也想知道這些:

超實用.科學用語圖鑑:物理、電、化學、生物、地科、宇宙6大領域讓你一次搞懂136個基礎科學名詞

為了解決蛋白質 結構 AI的問題,作者水谷淳 這樣論述:

科學素養第一步 從AI時代的科技用語,到生命誕生的機制── 深入淺出,解開生活在現代所必須理解的重要科學用語      你是不是常覺得「科學新聞很難懂」,或是「那些科學家所說的話我都聽不太懂」。會有這種感覺,主要原因之一,就是不了解科學語言與那些專有名詞的意思。     本書就是為了打破大家對於科學那種霧裡看花的感覺而誕生的。書中從【物理、電學、化學、生物、地球科學、宇宙】六大領域中,精選136個基本科學詞語,以有趣生動的圖文方式,解釋這些科學用語的大略意義、容易令人誤解的理由,以及與日常生活間的關係。     不管你是曾經學過理化科學但已經忘記的成年人,或是正在學習苦讀的學生,這本書讓你

從此對於科學不再感到害怕,也讓我們生活周遭的科學用語變得淺顯易懂,不再一知半解。     【6大領域】   物理Physics   運動/力、場/能量/功/向量/慣性、離心力/光譜/重力/熵/核分裂、核融合……     電Electricity   電荷、電場/磁/半導體、電晶體/超導/雷射/LED/人工智慧/量子電腦……     化學Chemistry   元素、同位素/化合物/週期表/固體、液體、氣體/卡路里/酸、鹼、中和/奈米碳管……     生物Biology   細胞/光合作用、葉綠體/基因體、基因/DNA、RNA/基因操作、基因體編輯/免疫、疫苗、過敏……     地科Geogra

phy   低氣壓、高氣壓/鋒面/颱風/火山、地震/震度、地震規模/頁岩氣、頁岩油、甲烷水合物……     宇宙Cosmology   光年、天文單位、秒差距/彗星/星系/黑洞/大霹靂、宇宙暴脹/重力波/暗物質、暗能量……   本書特色     ★一個跨頁解釋一個或一組相關科學用語,沒有艱澀的觀念,而是用比喻的方式帶你輕鬆進入   ★6大領域,涵蓋報章雜誌常出現和討論的科學用語,你想從哪個領域開始閱讀都可以   ★插畫搭配文字,更容易理解,留下具體印象   ★六個科學專欄,探討科學的本質,以及如何看待科學,避免被騙或誤用   審閱&推薦     書中以淺顯文字解釋一些常見的科學名詞,加

上插圖輔助,讓讀者能快速吸收了解。──屋頂上的天文學家主理人 李昫岱     即使短篇幅仍能利用易懂的圖片及親人的文字傳達清楚的物理概念,推薦給在學或是想一探科普新聞用語的你。──物理教學YouTuber吳旭明 × 蔡佳玲     要了解核心理論、貫通基本概念,第一步就是先清楚了解相關專有名詞的定義,與這些專有名詞間的關係。──北一女中生物科教師 蔡任圃     《超實用.科學用語圖鑑》像是實體版的簡要科學維基,提供了豐富的圖文說明科學專有名詞,而且在學科主題間加上了科學方法的內容,是兼具科學知識和方法的科普書。──十二年國教自然領綱委員 鄭志鵬(小P老師)     (按姓氏筆畫序排列)   

蛋白質 結構 AI進入發燒排行的影片

影片中提到的資訊可以在這裡得到更完善的解釋:https://goo.gl/yEB3JV - 原作者 Johnny Chung
♛購入TAIGER ➢https://www.taigerapparel.com
♛TAIGER 粉絲專頁 ➢https://fb.com/taigerapparel
♛健身補充品 APN Supplements ➢http://goo.gl/VawgEg (折扣碼tao5)
♛追蹤 Instagram ➢https://instagram.com/ricegvng
♛個人粉絲專頁 Facebook ➢https://fb.com/ricegvng

--
影片中提到的資訊可以在這裡得到更完善的解釋:https://goo.gl/yEB3JV - 原作者 Johnny Chung

接著前一篇的白話淺談PCT,為了讓大家不要再把抗雌與PCT這兩件完全不同的事搞混,本篇我要講的是”抗雌”
知道類固醇的人應該多少都知道某些藥物會”雌化”,也就是轉換成雌激素,進而引起讓大家怕的要死的性感女乳奶子(國外簡稱Gyno),但雌激素帶來的相關副作用可不止如此,還會讓你整個人看起來水水的水腫、容易脂肪屯積,這些都是我們不想要的結果,所以我們必需在cycle時一定要做好抗雌的措施。


女乳Gyno
我們先從”雌化”這個過程的產生講起,就拿最基礎的睪酮Test來當例子,睪酮是由男生蛋蛋裡的萊氐細胞分泌的一種雄性激素(補充一下:女生體內也是有微量的睪酮,是從卵巢分泌出來的),睪酮是雄激素,它主要提供兩大功能:促進蛋白質同化合成代謝的”合成代謝能力”、與維持雄性外表及性徵的”雄性化能力”
當我們在用藥on cycle時,體內睪酮濃度水平大大升高,此時會有兩種情況發生,分別是雄化與雌化,雄化!? 我們本來就是男的,雄化又怎樣!? 當雄性化能力太強時,就會發生:掉髮(絕頂!?)、皮膚易出油油膩膩、爆痘痘(顏值大減…)、體毛增長、攝護腺肥大等…….這些雄性化副作用都是由於我們體內過多的睪酮被”5-alpha-reduce酶”給轉化成二氫睪酮DHT所致,DHT比起睪酮有更強大的雄性化能力,但肌肉的合成代謝能力卻又很低,而DHT非常容易與頭皮、皮膚某些部位(例如最多人長痘痘的地方:背、胸、脖子)、及攝護腺的雄激素受體AR結合而發生反應,造成掉髮、痘痘等這些擾人症狀。
那雌化呢?雌化是睪酮被”芳構酶(Aromatase Enzyme)”轉化成雌激素,這過程就稱為芳構化作用,而這些雌激素再與體內雌激素受體ER結合,進而發生雌化。
雄化與雌化比起來,一般我們會對雌化這個副作用比較在意,只要體內雌激素水平一高,就會面臨乳頭浮腫(也就是乳腺發育,嚴重時最終就是變成性感女乳)、身體水份儲留而水腫、脂肪增加等問題。
基本上我們男性體內的雌激素主要是兩個來源,一是身體自行製造分泌的;二是經由雄激素轉化而來的,所以如果是”自然”不用藥的愛好者是不用太擔心這點,除非你體質異常,但是玩黑魔法的人就一定要注意了。
那麼抗雌該怎麼進行呢?我們體內有許多的激素受體,各種激素必需要與該激素的受體結合才能起效果,就像我們所用的合成代謝雄激素類固醇,它必需與體內的雄激素受體AR結合,才能發揮效果;同樣的,雌激素也要與雌激素受體ER結合才會發生雌激素作用。
所以,只要阻止雌激素與雌激素受體結合,就不會產生雌化了。
我們用的抗雌藥有兩類,選擇性雌激素接受體調節劑SERM(Selective Estrogen Receptor Modulator)、芳構酶抑制劑AI(Aromatase Inhibitor)
(其實還有第三種可以降低雌激素,使用受體下調劑(Receptor Down-regulators),這類藥物是透過降低雌激素受體水平來產生作用的,也就是降低雌激素受體的濃度及活性,使雌激素的作用忽略不計,但我們用不到它)
SERM最典型的就是Tamoxifen,在正規醫療用途上是用來治療乳癌,簡單說一下它的作用原理:Tamoxifen的結構和雌激素相似,所以它能與雌激素受體結合,使得雌激素無法與雌激素受體結合,無法結合也就無法產生雌激素作用。
接著說AI,我在前面有提到:” 雌化是睪酮被”芳構酶(Aromatase Enzyme)”轉化成雌激素,這過程就稱為芳構化作用”,基本上,我們玩黑魔法的,是把各種雄激素扎(吃)進身體裡,而這些雄激素裡有許多種都可以和芳構酶發生作用的,進而轉化成雌激素或是雌激素的衍生物,所以,AI的原理就是利用它本身的結構,使得AI對芳構酶有非常強的親和力,比起雄激素對芳構酶之間的親和力還強,在AI與芳構酶結合後,芳構酶就失去活性了,換句話說就是被消滅了……..
換個角度來講,簡單來說就是AI就是小三,介入了原配雄激素與芳構酶之間,最後就破壞了雄激素與芳構酶的感情,芳構酶最終和AI結合私奔而去了,留下了孤單的原配雄激素……沒有與芳構酶結合就無法產生愛的結晶~~雌激素,沒有了雌激素就不會雌化了…….
SERM與AI各有不同用途,應用時機也有不同,AI現在我們用的是屬於第三代,同時又還分為一型與二型,我們會用到的AI主要有Anastrozole、Exemestane、Letrozole這三種,每種使用的方法與時機都有所不同。
其實,大家也不要對雌激素抱有太大的敵意,雌激素對我們還是有許多正面的好處,例如:保護心血管、穩定血脂、提高免疫力、維持骨質密度、維護肌肉蛋白質同化合成代謝(是的….你沒看錯,雌激素對增肌也是有幫助,因為雌激素也會影響到GH、IGF-1)
但是,你也不能太隨便,每個cycle在設計時都必需要考慮到”抗雌”這塊,相信沒有人想要在cycle結束了之後,肌肉長了、性感奶子也長出來了吧….……
曾經有位年紀很輕的藥頭私訊問我(如圖):要”多久”才要抗雌一次!?!?!? 我看了差點昏倒,也真替向他買藥的人擔心…….(話說他還到處加好友,並主動私訊推銷藥物…..自己都不懂了,還到處亂賣……真夭壽!)

抗雌的方式也不是就一定要使用SERM、AI,也可以利用類固醇本身的附加作用,有些藥物本身就可以抗雌,那些東西都是屬於二氫睪酮DHT的衍生製品,而DHT本身就是天然的抗雌。
合理、選擇正確的抗雌才能讓你的cycle產生最佳效果。
最後………………………………………….不要再把抗雌、PCT、保護等等什麼的搞混了啦!

探討臨床抗藥性非小細胞肺癌病人肋膜積液分離的肺癌細胞中EGFR與PD-L1之表現及功能

為了解決蛋白質 結構 AI的問題,作者張建仁 這樣論述:

肺癌是全世界死亡率第一的癌症,其中非小細胞肺癌是所有肺癌中最常見的型態。抗藥性及癌幹性是肺癌治療中非常重要的議題。在本研究,我們從臨床非小細胞肺癌病人的惡性肋膜積水中分離出肺癌細胞,探討這些細胞的抗藥性及癌幹性。我們成功的分離並建立八株非小細胞肺癌細胞株,命名為病患肺癌(PLC)系列,包含PLC25、PLC26、 PCL38、PLC41、PLC50、PLC54、PLC57和PLC70。所有的PLC細胞株在二維空間培養皿都具有細胞生長及增殖的能力,在三維空間基質培養皿都能增殖形成球團狀型態,從這些細胞中,我們分離核醣核酸進行基因定序方式檢測上皮生長因子接受器(EGFR)酪胺酸激酶結構域位點基因

序列及KRAS基因序列,進一步與臨床上用福馬林固定後包埋在石蠟塊中的組織所檢測的結果做比對,於EGFR酪胺酸激酶結構域位點上的基因定序型,大部分呈現相同的結果,除了一例在PLC54細胞呈現EGFR T790M基因型態不一致,這一例於臨床上接受osimertinib治療結果為內因性抗藥性,這可能因於肋膜積水與原發肺腫瘤之間的異質性導致。分析這些病人細胞株中蛋白質的表現,發現EGFR及PD-L1呈現多寡不一的表現,但在survivin則是呈現一致性的正表現,而癌幹蛋白如CD133、SSEA-1及SSEA-4,除少部分細胞株外,多呈現較少表現情形。進一步驗證這些細胞株的腫瘤形成能力,將PLC26和P

LC38細胞植入於裸鼠中,結果都有明顯的腫瘤生成能力。我們發現PLC26有良好的細胞增殖及腫瘤形成能力,跟其他細胞株比起來,擁有特異性高度PD-L1蛋白質的表現。分析完這些特性後,我們進一步研究PD-L1在PLC26細胞的增殖及腫瘤形成能力扮演的功能,利用CRISPR/Cas9基因編輯方式去剔除PLC26細胞的PD-L1基因,比較剔除前後的變化,結果發現當PD-L1基因被剔除後, PLC26的細胞增殖及腫瘤形成能力顯著的下降,進一步發現PLC26細胞的EGFR表現卻增加,以及下游MAPK及PI-3K活化,但是最終外顯結果仍是呈現下降的細胞增殖能力,並伴隨survivin、cyclin A及CD

K2蛋白表現的下降。此外,我們也發現PD-L1的表現會影響atezolizumab的藥物反應,單純處理atezolizumab在PD-L1表現的PLC26肺癌細胞作用時,於沒有免疫細胞的參與下,就有明顯抑制癌細胞及腫瘤的效果。總結本研究,惡性肋膜積水提供一個好的來源及模式去探索腫瘤生物學,包括生長、增殖、腫瘤形成及抗藥性,我們建立了一套從臨床非小細胞肺癌病患惡性肋膜積液中,分離肺癌細胞的程序及培養的條件,所建立的細胞株將可提供未來進一步探討抗藥機制與新藥開發等應用。

語言學:結構、認知與文化的探索

為了解決蛋白質 結構 AI的問題,作者黃宣範,連金發,蘇以文,呂佳蓉,馮怡蓁,邱振豪,盧郁安,宋麗梅,鄭奕揚,江文瑜,黃文怡,林智凱,張顯達,徐嘉慧,李佳霖,戴浩一, 這樣論述:

  語言學是一門不斷發展、創新與突破,又高度跨領域的知識體系。長久以來,台灣需要一本既能敘說本土故事,又能引介語言研究新知的書,而本書就是這個夢想的結晶。     透過國立臺灣大學和十九位語言學者的共同策劃與分章執筆,本書取材自台灣南島語、客語、台語、華語、手語,提供語言學各個基礎分支與跨學門應用的介紹,內容兼具學術與科普性質,適合對語言學有求知慾的讀者閱讀。全書探索台灣語言結構的規則性與特色、認知概念如何與語言密切關聯以及語言作為思想與文化載體的作用,期盼為台灣學術界、青年學子,以及對語言現象感興趣的讀者開闢嶄新的道路,藉由欣賞語言的奧祕,從而激盪出更多的知識對話。

利用複合式特徵與堆疊型後設學習法偵測蛋白質交互作用和殘基結合區塊

為了解決蛋白質 結構 AI的問題,作者陳冠熙 這樣論述:

蛋白質交互作用在所有的生物程序中扮演關鍵的角色。過往的研究顯示蛋白質交互作用除支配生物體內的各種功能亦與疾病的關聯甚深,舉凡癌症,傳染病與神經退化性疾​​病皆受到蛋白質影響。因此辨識蛋白質交互作用的研究可用於尋找疾病治療方法與研發新型藥物。近年來判斷蛋白質交互作用的影響已經成為研發新型藥物過程中最具挑戰性的任務。此外判斷蛋白質交互作用在生物體內造成的功用需要依靠複雜的程序辨識蛋白質結合區塊。為應付逐漸增加的蛋白質互動與功能判斷的辨識需求,需要一個能夠更快且準確的判斷方法。因此在本研究中,我們整合蛋白質交互作用與殘基結合區塊的辨識,透過計算機科學的方式研發新的預測機制用以判斷蛋白質互動與辨識殘

基結合區塊。首先,我們針對蛋白質交互作用的問題提出 PPI-MetaGO 方法判別蛋白質交互作用。PPI-MetaGO 從蛋白質序列、基因本體論與蛋白質網路拓樸等資訊擷取複合式特徵用以表示蛋白質配對。其中蛋白質序列題中胺基酸的物理化學特性;基因本體論中的有向無環圖結構則是被訓練資料提供的資訊分割為數個子圖用以取得相關的特徵;訓練資料中的蛋白質在透過計算基因本體論的相似度後可組成一個無向性網路,從中可獲得蛋白質網路相關的特徵。我們以堆疊型後設學習機制為基礎設計 PPI-MetaGO 。PPI-MetaGO 可推論各個基底分類器的偏差並且利用不同演算法的特性調和最終的結果,用以改進蛋白質交互作用預

測。殘基結合區塊的辨識的任務是判斷蛋白質交互作用中胺基酸殘基的結合位置,我們重複利用PPI-MetaGO 的序列特徵,組合出是用於辨識殘基結合區塊的特徵。此外,擷取蛋白質 3D 結構中的資訊亦被用來擴充特徵集合。我們提出 RRI-Meta 用以預測特定結合對象型態的蛋白質結合區塊。RRI-Meta可以使用蛋白質序列或3D結構的特徵或上述兩者提供的特徵進行預測。RRI-Meta同樣透過堆疊型後設學習機制使用蛋白質序列或蛋白質結構或兩者一起提供的特徵預測氨基酸殘基結合區塊。為了評估 PPI-MetaGO 的效能, 我們使用當前最佳的蛋白質預測方法使用過的資料集做為測試資料以確保實驗的一致性與公平性

。實驗結果顯示 PPI-MetaGO 在所有的比較方法中取得領先的位置,證實 PPI-MetaGO 可更有效處理蛋白質交互作用預測。我們採用跟 PPI-MetaGO相同的實驗機制檢視 RRI-Meta 的成效,實驗的結果同樣顯示 RRI-Meta 可以在相同的測試集中得到更好的預測結果,有效降低實驗室檢驗的數量與時間。