阻抗英文的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

阻抗英文的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦史考特.拉奧寫的 義式咖啡的萃取科學:專業玩家、咖啡師必備的完全沖煮手冊;煮出油脂平衡、基底飽滿,適口性佳的濃縮咖啡 和白明憲 的 工程聲學(第八版)都 可以從中找到所需的評價。

另外網站【阻抗圆】的英文翻译和相关专业术语翻译-SCIdict学术词典也說明:【阻抗圆】的英文译词:impedance circle; 【阻抗圆】的相关专业术语翻译:异步边界阻抗圆asynchronous limit impedance circle; 静稳极限阻抗圆steady-state ...

這兩本書分別來自方言文化 和全華圖書所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出阻抗英文關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文國立勤益科技大學 資訊管理系 董俊良所指導 黃俊傑的 植基於支援向量機模型之良品預測—以石英振盪器銲線製程為例 (2021),提出因為有 石英振盪器、銲線、支援向量機、品質分類的重點而找出了 阻抗英文的解答。

最後網站什么叫见诸行动? - 理论思考 - 南岛精神分析則補充:... 分析临床概念,其英文词汇就有agieren(动作)、acting in(治疗内见诸 ... 简单地说,见诸行动是患者对分析的一种反应方式,指患者身上因阻抗而 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了阻抗英文,大家也想知道這些:

義式咖啡的萃取科學:專業玩家、咖啡師必備的完全沖煮手冊;煮出油脂平衡、基底飽滿,適口性佳的濃縮咖啡

為了解決阻抗英文的問題,作者史考特.拉奧 這樣論述:

銷量破萬!暢銷書《咖啡沖煮的科學》進階完全版! 咖啡教父史考特.拉奧(Scott Rao)入行30年經典大作! 【特別收錄】臺灣版專序&訪談影片   ►義式濃縮的最佳水粉比例、萃取壓力、時間、溫度有何標準?科學數據都有解!   ►牛奶加熱到幾度最適合用來拉花?如何改善奶泡濃稠度,以一壺蒸奶完成多杯飲品?   ►同場加映:史考特(私底下愛喝茶勝過咖啡)的沏茶小訣竅!泡茶也可以很科學!   專業玩家、咖啡師最想知道的大哉問:如何煮出品質穩定且口味一致的濃縮咖啡?   本書是作者史考特.拉奧於30年前入行時,就開始發想的首部經典著作。   彼時的他,四處尋找一本書,能涵蓋「在咖啡館沖煮優質

咖啡」時,所需的知識與建議。   然而,遍尋不著之下——他索性下海自己寫!   史考特.拉奧說:   「我知道許多咖啡專業人士,以及某些狂熱的咖啡業餘愛好者,   和我一樣仍在尋找這樣的作品。而各位現在手中的這本《義式咖啡的萃取科學》,   就是我希望完成大家的心願所做的嘗試。」   書中除了說明義式濃縮咖啡所有的萃取細節外,   亦首度公開他在蒸奶與拉花實作上的心得與建議,   更提供研磨刻度、壓力干預、沖煮強度、粉層厚度等標準數值,   可說是現代咖啡科學研究風潮的濫觴。   不論你是專業玩家、職業咖啡師,或單純喜歡在家煮咖啡的初心入門者,   都能在這本書裡找到最實際的萃取建議。

  ★如何維持濃縮咖啡的油脂平衡、基底飽滿,以及最佳適口性?   義式濃縮品質穩定的關鍵在於油脂平衡。   萃取時產生的懸浮固體顆粒與乳狀液體(不可溶的微小油滴),   會替義式咖啡帶來香氣、醇厚度與味道,成就飽滿的咖啡基底;   這些油脂同時也會包覆蓋舌頭並降低咖啡苦味,帶來最佳適口性。   如何煮出品質穩定且口味一致的濃縮咖啡?史考特整理出下列數據:   水粉比例:7~20公克咖啡粉:14~60公克水   萃取壓力:7~9巴(bar)   萃取時間:20~40秒   溫度:攝氏85~95度   ★加碼收錄大師級蒸奶與拉花、滴濾咖啡、法式濾壓壺等實作技法   ►義式濃縮:如何均勻

注粉、修整鋪平?什麼是短萃、正常與長萃義式濃縮咖啡?   ►滲濾萃取:義式濃縮的固體物質濃度要達到多少,萃取出的咖啡液才不會「太水」?   ►蒸奶與拉花:牛奶加熱到幾度最適合用來拉花?如何以一壺蒸奶完成多杯飲品?   ►吧檯系統:最佳製作流程如何安排?有哪些增進效率的必備工具?   ►滴濾咖啡:最適兌水、沖煮量、溫度為何?自動滴濾機的典型參數如何設定?   ►法式濾壓:如何利用法式濾壓壺做出醇厚度最高、風味純淨度最低的咖啡?   一起回到咖啡教父最初的起點!   做出品質穩定且口味一致的濃縮咖啡! 本書特色   ◎咖啡教父史考特.拉奧入行30年暢銷經典!煮出油脂平衡、基底飽滿,適口性佳的

濃縮咖啡   ◎首部討論水粉比例、沖煮強度、萃取率等數據的咖啡專書,現代咖啡科研風潮的濫觴!   ◎大師級蒸奶與拉花技法大公開;加碼收錄滴濾咖啡、法式濾壓壺、沏茶等實作建議! 專業推薦   2020年外媒評鑑臺灣最佳咖啡館mojocoffee創辦兼主理人、咖啡講師/陳俞嘉Scott   專文推薦   世界最佳咖啡館Simple Kaffa興波咖啡共同創辦人、2016世界咖啡師大賽冠軍/吳則霖   GABEE.創辦人、首屆世界咖啡大師比賽臺灣冠軍/林東源   維堤咖啡學苑執行長/楊明勳(Frank)   虎記商行/寧波東街小霸王   WCE世界咖啡杯測師大賽世界冠軍、WCE世界咖啡沖煮大賽

臺灣冠軍&世界第四/劉邦禹   《咖啡學》系列作者/韓懷宗   專業推薦(按姓名首字筆畫排序)  

阻抗英文進入發燒排行的影片

蛋的膽固醇真的高,但you know膽固醇是身體必需品嗎?
以前千叮萬囑不要吃太多蛋的時代早已過去
其實,每天都要吃蛋yo

☞蛋蛋小知識&蛋蛋食譜一網皆得:
https://tw.osparks.com/player/50/6161

✎蛋營養食譜:
❚瘦肉蒸蛋❚
高蛋白營養食譜,簡單又好做,生酮必備
https://youtu.be/hmSCFS7KAOk

❚海帶芽炒蛋❚
愛吸油的蛋要怎樣才炒得出少油又滑嫩的口感呢?
https://youtu.be/cQkt2l3y26w

參考文獻:
[1] https://www.ncbi.nlm.nih.gov/pubmed/16988120
年長者連續五週每天吃一顆蛋,血液葉黃素與玉米黃素增加,而血膽固醇數值未增加
[2]https://www.ncbi.nlm.nih.gov/pubmed/23021013
有代謝症候群的人們每天三顆全蛋,配合限醣飲食連續3個月,使胰島素阻抗下降!
[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904713/
高血脂症者連續一個月每天吃三顆蛋,血膽固醇數值未增加

#愛撥營養師DietitianAibo #蛋營養 #食物科學

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決阻抗英文的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

工程聲學(第八版)

為了解決阻抗英文的問題,作者白明憲  這樣論述:

  「聲學」是指聲音的科學,泛指一切有關聲音的學問,本書作者有感於現今的社會裡聲學的應用重要性與日俱增,學術界與產業界對聲學相關課程需求日殷,但國內中文的聲學教材卻非常稀少,因此將自己十餘年的教學與研究經驗及課堂上的講義編著成書,希望對國內聲學教育盡綿薄之力。本書主旨在:1.提供學者及業界聲學的入門中文教材。2.建立初學者對聲學理論廣泛的基本觀念。3.介紹與聲學相關的各種應用。4.介紹主動式噪音控制的新科技。讀者在讀完本書後可輕鬆地建立對聲學的理論架構何實務基礎。 本書特色   1. 提供學界及業界聲學的入門中文教材。   2. 建立初學者對聲學理論的基本概念。   3

. 介紹與聲學相關的各種應用。   4. 介紹主動式噪音控制的新技巧。   5. 使讀者輕鬆地建立對聲學的理論架構和實務基礎入門。

植基於支援向量機模型之良品預測—以石英振盪器銲線製程為例

為了解決阻抗英文的問題,作者黃俊傑 這樣論述:

銲線製程於石英振盪器的封裝流程屬於前段製程,銲線品質的優劣會直接對電子產品電子訊號的傳輸、阻抗干擾等造成影響,且銲線製程所造成的報廢無法再次重工,故該製程對石英振盪器十分重要。而在銲線製程中的金球球厚、金球球徑、金線弧高則是銲線品質判定的其中幾個重要關鍵因子,目前業界普遍使用放大倍數較高的電子顯微鏡由品管人員人工量測再進行判斷,但因人員量測手法有些微差異或是測量過多而使人員產生視覺疲勞、或注意力分散等因素而產生誤判。本研究使用支援向量機(Support Vector Machine, SVM)進行品管的分類預測,分類模型的應變數為品管分類(即良品與不良品),自變數為金球球厚、金球球徑與金線弧

高。本研究實驗的結果顯示,以支援向量機模型為基礎的石英振盪器品管分類模型,透過 70/30訓練資料與測試資料進行模型的訓練與測試後,其Recall、F1-Score、Precision評估本研究所提出之分類模型之精準度,可提供準確的石英振盪器品管分類預測。