111年電價表的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

111年電價表的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦楊菁菁寫的 牽電點燈:集光發熱的用電服務(臺灣電力文化資產叢書10) 和(美)彌爾頓·梅克勒的 可持續分散式熱電聯產系統:設計建造與運行都 可以從中找到所需的評價。

另外網站政策措施- 最新消息 - 台灣電力公司也說明:三、各類別考試科目如附件,至應考資格、報名方式、報名日期及其他事項請參閱甄試簡章。簡章預定於104年8月6日公告於經濟部(http://www.moea.gov.tw/)、台糖公司(http:// ...

這兩本書分別來自台灣電力股份有限公司 和化學工業所出版 。

大同大學 設計科學研究所 許言所指導 劉立園的 產品設計公司之動態設計決策模式研究 (2021),提出111年電價表關鍵因素是什麼,來自於新資訊科技、產品設計公司、系統動力學、設計決策模式、影響因素。

而第二篇論文國立臺灣大學 環境工程學研究所 闕蓓德所指導 葛凡宇的 農地污染場址再利用評估工具-以桃園市為例 (2021),提出因為有 農地污染場址、再利用、土地利用適宜性分析、生命週期評估、生態系統服務價值評估、成本效益分析的重點而找出了 111年電價表的解答。

最後網站核定電價 - 能源局則補充:「表燈(住商)標準型三段式時間電價」及「低壓電力三段式時間電價」經濟部於110年1 ... 之試辦電價方案」經濟部於110年10月5日核定,試辦期間為110年10月15日至111年9 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了111年電價表,大家也想知道這些:

牽電點燈:集光發熱的用電服務(臺灣電力文化資產叢書10)

為了解決111年電價表的問題,作者楊菁菁 這樣論述:

  不同於台電的其他單位,業務處所建構的價值,正如電力一般,無色無形,卻讓民眾相當有感的-「服務」。   「我國電費相當親民」,但深入其中,發現維持親民的電費,可說是台電70多年來努力的目標。 對民眾來說,電帶來便利生活;但對業務處來說,如何紀實用戶的用電量、怎麼收費、追查違規用電、穩定電費價格,乃至更無形的台電社會回饋等,都是他們每天的日常。   這本書的基礎,來自於台電服務精神-「用心每一度,感動每 一戶」。  

產品設計公司之動態設計決策模式研究

為了解決111年電價表的問題,作者劉立園 這樣論述:

新資訊科技影響了產品生命週期的各個階段,在設計、製造和行銷方面發揮了關鍵作用,同時影響了產品設計公司。產品設計公司不再是單一的以設計為主,而是重視和利用新資訊科技,與製造領域和行銷領域緊密聯繫,並取得了成功。但是,仍然有很多產品設計公司無法協調新資訊科技、設計、製造和行銷的關係,阻礙了公司的發展。因此,本研究即以產品設計公司的角度出發,旨在建立新資訊科技影響下的「動態設計決策模式」(3DM),產品設計公司可以根據實際發展需要,透過動態設計決策模式,計算和分析不同因素之間的影響,以提供給產品設計公司及其相關領域決策者的參考為目的。 研究採用了系統動力學的理論和方法,透過文獻研究和專家訪談法

,建構一個因素之間相互聯繫的動態設計決策模式。在確定動態設計決策模式的因素及其相互關係的過程中,以文獻研究為基礎,整理出27個因素和29組因果關係。然後再以半結構化訪談、焦點團體法、德爾菲法的專家訪談方法,補充了6個因素和32組因果關係,並評估因素之間的影響大小;最後利用系統動力學軟體——Vensim,根據因果關係和影響大小,建立動態設計決策模式。 為了驗證動態設計決策模式的應用,利用動態設計決策模式計算產品創新、製造品質、市場需求和大數據四個關鍵因素對各個領域的因素的影響,以及結合實際案例的計算,結果發現:(1)設計領域中的產品創新對設計品質的影響最大;(2)製造領域中的製造品質對設計

優化的影響較大;(3)行銷領域中的市場需求對設計優化的影響較大;(4)大數據對其他領域因素的影響普遍高於其他三個關鍵因素對其他因素的影響;(5)在3DM模式中,因素之間相互影響,可以有效地避免獨立領域或獨立因素之間的相互脫節,及時促進各個領域因素之間的資訊回饋;(6)產品設計公司應用3DM模式,可以對多個因素進行快速的影響評估,比較影響大小,以確保公司管理者實施決策的主要方向。以上結果表明了動態設計決策模式可以輔助產品設計公司進行決策分析,並為產品設計公司提出建議和對策。

可持續分散式熱電聯產系統:設計建造與運行

為了解決111年電價表的問題,作者(美)彌爾頓·梅克勒 這樣論述:

本書針對可持續分散式熱電聯產系統的規劃、設計、建設以及運行,主要包括6大方面的內容:第1部分的研究將使讀者很好地瞭解什麼是CHP,CHP的工作如何創造不一樣的可持續性未來、發電設備的可選類型、餘熱回收和有益的熱能使用、需要考慮的監管問題、可行的排放控制方案,以及CHP可靠性的概述;第2部分,可行性研究,回顧了一些必要的基礎概念,包括合理規劃可持續CHP能源站、如何實施生命週期成本分析(LCC)、以及對系統進行優化;第3部分,設計,討論了一些重要的工程設計問題,包括電氣並網設計問題,以及需要經過核准的規劃以及如何獲得建設許可(也就是開始建設的核准)等內容;第4部分,建設,詳述了建設過程中的問題,

包括了不同的合約組織架構、合同交付方式以及風險管理;第5部分,運行,詳述了維持CHP能源站如預想的一樣可持續性運行所要達到的條件,以及最重要的是如何對能源站進行監控從而提升其性能達到可持續性;第6部分,案例研究,提供了一系列案例分析說明了可持續性使用者端CHP系統是如何被規劃、設計、建設以及有效並可持續運行。本書可供從事分散式能源行業的機械及電氣工程師、建築業主、開發商、建築及能源站運行人員、建築師以及承包商等參考。 第1部分 CHP基礎 第1章 概述 2 1.1 為什麼選擇CHP 3 1.2 歷史 4 1.3 CHP基本介紹 7 1.3.1 發動機類型 9 1.3.2

熱耗率 10 1.3.3 發電機與配電系統 10 1.3.4 餘熱鍋爐 11 1.3.5 導熱流體的交替使用(導熱油) 11 1.3.6 餘熱利用的類型 11 1.4 匹配載荷要求 12 1.4.1 熱能品質 12 1.4.2 常用系統大小 12 1.4.3 環境影響與控制 13 1.5 分散式能源行業面臨的主要問題 14 參考文獻 15 第2章 CHP系統的適用性 16 2.1 背景 16 2.2 商業及公益機構的CHP 應用 18 2.2.1 原動機燃料類型 19 2.2.2 建築類型及規模 19 2.2.3 氣候區域 23 2.2.4 BCHP原動機的基本類型及功率範圍 24 參考文獻

27 第3章 電力設備及系統 29 3.1 燃料發電設備 32 3.1.1 活塞式內燃機 33 3.1.2 燃氣輪機 40 3.1.3 微燃機 43 3.1.4 燃料電池 44 3.2 熱動力設備 47 3.3 CHP原動機比較 50 3.3.1 電力輸出與發電效率 50 3.3.2 餘熱利用的潛力 50 3.3.3 燃料及燃料壓力 51 3.3.4 Ox 排放 51 3.3.5 功率密度 51 3.3.6 設備可執行時間及大修間隔時間 52 3.3.7 啟動時間 52 3.3.8 雜訊 52 3.4 CHP能源站系統要求 53 參考文獻 54 第4章 CHP熱負荷設計 55 4.1 C

HP系統的熱負荷設計 56 4.1.1 負荷係數VS效率 56 4.1.2 熱電比 57 4.1.3 建築物負荷 58 4.2 餘熱利用設備的選擇及設計 59 4.3 熱能技術 62 4.4 負荷特徵及優化 68 4.5 與建築系統融合 71 第5章 模組化CHP系統 73 5.1 模組化CHP系統的內在特徵 73 5.1.1 預工程設計 74 5.1.2 預裝配 75 5.1.3 預質檢 75 5.2 模組化CHP系統的優點與缺點 76 5.2.1 提高性能 76 5.2.2 降低負面環境影響 79 5.2.3 更高的可靠性 80 5.2.4 更好的經濟性 80 5.3 商用模組化CHP系

統案例 81 5.3.1 電力/熱水系統 81 5.3.2 電/冷/熱系統 82 參考文獻 82 第6章 監管問題 84 6.1 美國聯邦政府CHP政策 84 6.2 美國州級CHP政策 86 6.3 其他國家CHP政策 88 6.4 CHP專案計畫 89 6.4.1 紐約州能源研究與發展機構的DG-CHP(區域能源-熱電聯產)示範項目 89 6.4.2 加利福尼亞州標準並網準則 89 6.4.3 康涅狄格州可再生能源配額標準 90 6.4.4 德國上網電價補貼 90 6.4.5 公用事業公司項目計畫 91 6.5 未來政策發展 91 6.6 CHP系統要求 92 第7章 碳排放—環境效益

及排放控制 93 7.1 發電產生的碳排放 94 7.2 溫室氣體排放計算系統 95 7.2.1 美國環保局溫室氣體排放當量計算系統 95 7.2.2 美國環保局辦公室碳排放計算系統 95 7.2.3 潔淨空氣清涼地球校園溫室氣體排放計算系統 96 7.2.4 世界資源研究所的工業與辦公領域計算系統 96 7.3 CHP環境效益 96 7.4 CHP環境排放 98 7.4.1 活性有機氣體的排放 98 7.4.2 排放計算系統 98 7.5 CHP排放控制技術 102 7.5.1 活塞式內燃發動機 102 7.5.2 燃氣輪機 104 參考文獻 108 第2部分 可行性研究 第8章 基礎概

念 110 8.1 研究類型—從篩選到具體可行性 110 8.2 可行性研究工具及軟體 111 8.2.1 手冊和列線圖粗略篩選(或者初步可行性評價) 111 8.2.2 軟體篩選工具 112 8.2.3 設計用逐時能源模擬工具 113 8.2.4 排放測算工具 113 8.3 CHP合格篩選—現有設施 114 8.4 Level 1可行性研究—現有設施 114 8.4.1 原始資料收集 115 8.4.2 後續分析 115 8.4.3 經濟性分析 116 8.4.4 Level 1可行性研究—基本大綱 117 8.5 Level 2可行性研究—現有設施 118 8.6 新建設施的CHP可行性

119 參考文獻 120 第9章 CHP經濟性分析 122 9.1 CHP經濟性分析 122 9.2 簡單投資回收分析 122 9.3 生命週期成本分析 123 9.3.1 備選方案 123 9.3.2 工程經濟學 123 9.3.3 生命週期成本過程 124 9.3.4 資本成本對比年度成本 124 9.3.5 現金流量表 124 9.3.6 資金的時間價值 125 9.3.7 折現率 125 9.3.8 利率 125 9.3.9 等值 125 9.3.10 現值 126 9.3.11 淨現值 126 9.3.12 上漲率 127 9.3.13 分析週期 127 9.3.14 殘值 12

7 9.3.15 年金 128 9.4 計算預估的能源耗費和成本 128 9.5 預測年運行及維護費用 130 9.6 工程造價預算 131 9.7 計算生命週期成本 132 參考文獻 133 第3部分 設計 第10章 工程設計程式 136 10.1 雇傭最好的工程設計團隊 137 10.1.1 資質驗證 138 10.1.2 面試 139 10.2 工程設計程式 140 10.2.1 規劃項目管理計畫 141 10.2.2 規劃 142 10.2.3 法令/規範審查 143 10.2.4 方案設計和設計深化 143 10.2.5 技術規範 144 10.2.6 施工圖(工程建設檔) 14

4 10.2.7 規劃確認 145 10.2.8 招標文件 145 10.3 CHP設計的主要問題 146 10.3.1 原動機選擇效果 147 10.3.2 餘熱利用選擇 147 10.3.3 燃料系統 149 10.3.4 助燃空氣 150 10.3.5 排氣系統 151 10.3.6 排放控制 151 10.3.7 熱能利用 152 10.3.8 並網及保護 153 10.3.9 運行靈活性 153 10.3.10 能源站選址及佈置 153 10.3.11 降低雜訊和振動 154 10.3.12 電廠控制/集成 155 10.3.13 運行策略 156 10.4 無形的知識與經驗 156

第11章 電氣設計特徵及問題 157 11.1 配電裝置設計要點 158 11.1.1 選擇和設計 158 11.1.2 環境要求 162 11.2 接地考慮 162 11.2.1 接地系統類型 163 11.2.2 連接要求 164 11.2.3 CHP電能品質 164 11.3 並網規範和標準 165 11.3.1 保護要求 165 11.3.2 專用保護要求 167 11.3.3 並網流程概述 168 11.3.4 最終並網接受與啟動 169 11.4 示例系統圖 170 11.5 總結 173 參考文獻 173 第12章 獲取建設許可 174 12.1 環境評價與許可獲得程式 1

74 12.2 建立有效的申請 175 12.2.1 現有條件概況 175 12.2.2 專案建議書 175 12.2.3 適用的環境標準和規範 176 12.2.4 項目影響 176 12.2.5 遵循規章制度的決定以及建議的批復條件 176 12.3 空氣品質 176 12.3.1 技術與排放標準 178 12.3.2 技術評判工具與方法 179 12.3.3 大氣排放清單 180 12.3.4 分析空氣品質影響及遵循適用的規程規範 180 12.4 雜訊 182 12.4.1 雜訊特徵 182 12.4.2 雜訊標準 183 12.4.3 降噪 184 12.4.4 危險品運輸及儲存 1

84 12.4.5 液體燃料儲存 184 12.4.6 氨運輸與儲存 185 12.4.7 危險品 185 12.5 其他潛在環境影響 185 12.5.1 施工影響 185 12.5.2 審美影響 185 12.5.3 環境正義 186 12.5.4 文化及古生物資源 186 參考文獻 186 第4部分 建設 第13章 CHP建設 190 13.1 評估承包商的優勢 191 13.2 CHP能源站合同組織架構 191 13.2.1 傳統的設計—招標—建設程式 192 13.2.2 設計—建設過程 192 13.2.3 整合專案交付程式 193 13.3 確定恰當的建設交付方法 194 1

3.4 通過工程合同保護專案 195 13.4.1 建設期間合同範圍的變化 196 13.4.2 不同的場地條件 197 13.4.3 不可抗力 197 13.4.4 違約金 198 13.4.5 履約擔保 198 13.4.6 履約保證金和保證書 199 13.5 有效的專案管理 199 13.5.1 進度 199 13.5.2 檔編制(文檔資料) 200 13.6 創新的解決爭議的技巧 200 13.6.1 仲裁 200 13.6.2 微型審判程式 201 13.6.3 專案爭議委員會 201 13.7 總結 201 參考文獻 201 第14章 獲得運營許可及實施合規管理程式 202 1

4.1 CHP系統的調試 202 14.1.1 連續排放監測系統認證 203 14.1.2 最終運營許可的頒發 205 14.1.3 實施合規管理程式 206 14.1.4 提交潛在需要的規劃 206 14.2 合規管理程式 207 14.2.1 運營及維護程式 207 14.2.2 合規監測 207 14.2.3 記錄與報告 208 參考文獻 209 第15章 CHP能源站建設期間風險管理 210 15.1 風險管理:保險行業視角 211 15.2 現有措施概述及限制 213 15.3 應對承包商的不確定成本 214 15.4 使用概率分佈 215 15.5 利用風險分析建立“最可能成本”

216 15.6 成本計畫中使用蒙特卡羅模擬 217 參考文獻 218 第5部分 運行 第16章 運行及維護 220 16.1 能源站運行人員 220 16.1.1 經驗及培訓 220 16.1.2 優秀的運行人員 221 16.1.3 能源站檢查 222 16.1.4 控制排放 222 16.1.5 健康與安全 223 16.1.6 操作手冊及作業規範 223 16.2 能源站啟動 224 16.3 能源站優化運行 225 16.4 能源站維護 227 16.4.1 燃氣輪機 227 16.4.2 餘熱鍋爐 227 16.4.3 蒸汽輪機 227 16.4.4 蒸汽型製冷機及吸收式製冷

機 228 16.4.5 能源站輔助設備 228 16.4.6 停機計畫 229 16.5 CHP能源站運行人員 229 第17章 維持CHP系統的運行效率 231 17.1 背景 231 17.2 性能監控 234 17.3 調試驗證(指令確認) 235 17.4 部件監測 235 17.4.1 原動機 235 17.4.2 熱回收設備 237 17.4.3 熱回收蒸汽發生器(HRSG) 239 17.4.4 吸收式製冷機 240 17.4.5 冷卻塔 242 17.4.6 泵 243 17.4.7 風機 243 17.4.8 除濕系統 244 17.4.9 系統整體的運行性能的監測 24

5 17.4.10 CHP系統性能監測與計算 247 17.4.11 指標的匯總(Summary)方程 247 17.5 基於監測和實驗測試資料的應用實例 250 17.6 利用CHP系統運行性能的監測及調試驗證公式的配置方案 252 17.7 CHP系統性能監測及調試驗證(指令確認) 的應用場合 253 17.8 總結 256 參考文獻 257 第18章 維持CHP運行 258 18.1 瞭解CHP能源站 259 18.2 CHP資料收集 260 18.2.1 計量 260 18.2.2 監測 260 18.3 CHP資料分析 261 18.3.1 標準 261 18.3.2 基準調查 2

63 18.4 保持問題日誌 263 18.5 開票(計費) 264 18.6 運行策略 265 18.7 運營培訓 267 18.8 維護 267 18.9 備用金 268 18.10 保險要求 268 18.11 讓人們瞭解CHP的良好益處 269 第6部分 案例分析 第19章 案例研究1:普林斯頓大學區域能源系統 272 19.1 歷史 273 19.2 中央能源站和系統 274 19.2.1 發電過程 275 19.2.2 配電 275 19.2.3 蒸汽生產 276 19.2.4 蒸汽配送和冷凝水回收 276 19.2.5 冷凍水生產 276 19.2.6 冷凍水配送 277 1

9.2.7 水系統品質管制 277 19.2.8 能源站控制 278 19.2.9 儀錶 278 19.2.10 即時的經濟調度 278 19.3 服務的可用性和可靠性 279 19.4 能源利用效率 279 19.5 環境效益、遵從性和可持續性 279 19.6 卓越業績和行業領先地位 280 19.7 員工安全和培訓 281 19.8 客戶關係和社會責任 282 19.9 最近的榮譽和獎項 282 第20章 案例研究2:布拉格堡熱電聯產項目 284 20.1 技術概述 285 20.1.1 熱電聯產系統並網 286 20.1.2 運行 286 20.1.3 性能測試 287 20.1.4

能量輸送 287 20.1.5 運行監測 288 20.1.6 整體能源利用 289 20.2 關鍵結論 290 20.3 結語 292 第21章 案例研究3:利用電腦類比確定新校區的最優規模 293 參考文獻 301 第22章 案例研究4:大學校園CHP系統分析 302 22.1 中央能源站介紹 303 22.1.1 熱電聯產設備 303 22.1.2 吸收式製冷機 304 22.1.3 校園蒸汽負荷 304 22.2 熱電廠優化方法 305 22.2.1 熱電聯產能源站的運行模式 305 22.2.2 分析使用的公用事業公司的能源價格 306 22.2.3 經濟分析中的設備模組 30

6 22.2.4 盈虧平衡分析 308 22.3 結論 312 第23章 案例研究5:政府設施——任務的關鍵 313 23.1 國土安全目標 315 23.2 建築節能目標 316 23.3 原動機可能性 318 23.3.1 黑啟動 319 23.3.2 應急能源 320 23.3.3 接入系統 320 23.3.4 其他考慮 321 23.4 電負荷級別 321 23.5 可靠性價值 323 23.5.1 環保局經濟性研究 323 23.5.2 電氣和電子工程師協會可靠性研究 324 23.5.3 可靠性價值的總結 326 23.6 監管與創新 326 參考文獻 327 第24章 案例

研究6:分散式CHP系統和EPGS系統生態影響的比較 329 24.1 介紹 330 24.2 參與比較系統的描述 331 24.2.1 傳統CHP能源站 331 24.2.2 ICHP/GCS能源站 331 24.2.3 由燃氣輪機排煙直接驅動的雙效吸收式製冷機組 335 24.3 系統成本比較 335 24.3.1 投資成本比較 335 24.3.2 能源成本對比 336 24.3.3 運行和維護費用比較 337 24.4 20年壽命週期成本 337 24.5 基於燃料層面的三種方案的環境影響分析 338 24.6 結論 339 參考文獻 339 第25章 案例研究7:集成CHP系統以改

善整體玉米乙醇經濟性 341 25.1 摘要 341 25.2 介紹 341 25.3 生物燃料的環境可持續性 343 25.4 當今玉米乙醇生產工藝 344 25.5 淨能源平衡考慮 345 25.6 第二定律考慮 347 25.7 乙醇經濟性再分析 348 25.8 相關的環境影響 350 25.9 玉米乙醇工藝的一些改進 352 25.10 美國的貿易差額問題 353 25.11 研究結果總結 354 25.12 CHP和EPGS系統的環境影響對比 356 25.13 結論 356 25.14 術語表 358 參考文獻 358 第26章 案例研究8:8.5MW IRS CHP工廠的節能

措施分析 360 26.1 評估可靠應急能源系統的CHP方案 362 26.2 考慮下列應急能源選項 363 26.3 應用的標準和規範 363 參考文獻 364  

農地污染場址再利用評估工具-以桃園市為例

為了解決111年電價表的問題,作者葛凡宇 這樣論述:

政府機關近年積極投入整治農地污染場址,不僅採納傳統整治工法,亦推廣轉作非食用作物、植生復育,以及作為生質能原料方法,然而土壤污染濃度達到整治標準而解除列管的農地,由於未善加管理或無法阻斷污染源,出現再次污染或農產品重金屬超標情形;農民考量投入成本和改善時程,不願轉作或採用植生復育改善方法;作為生質能原料則因農地狹小分散,不適合於國內發展。上述情形突顯政府機關耗資經費的整治作為,並未達到農地恢復種植功能的預期成效。因此本研究旨於建立一個兼顧環境面和經濟社會面的農地污染場址再利用評估工具,透過探討住宅、商業、工業、太陽光電和農業五種方案的再利用適宜性和效益,作為決策者優化農地污染場址管理效用以及

國土規劃策略之參考。 本評估工具分為兩階段,首先為再利用方案適宜性分析,採納18個環境面和社會經濟面因子,設定住宅、商業、工業、太陽光電和農業共五種再利用方案,透過土地利用適宜性分析 (land use suitability analysis, LUSA) 評選適宜性分數最高方案為未來的再利用方案。第二階段運用成本效益分析 (cost-benefit analysis, CBA) 計算場址以適宜方案再利用的耗費成本和產出效益,成本效益項目劃分為外部成本效益與內部成本效益;外部成本效益包括透過生命週期評估 (life cycle assessment, LCA) 計算的碳排成本與碳減緩效

益,以及藉由生態系統服務評估方法 (ecosystem services valuation, ESV) 量化的農地生態系統服務價值;內部成本效益定義場址以適宜方案再利用的商品生產或服務提供所涵蓋的直接成本和直接效益。最後採用淨現值方法 (net present value, NPV) 整合場址生命週期所有的外部成本效益和內部成本效益,評定適宜方案中淨效益最高方案為最佳再利用方案;若再利用成本高於再利用效益則恢復農業使用。 本研究以桃園市農地污染控制場址為研究案例,方案適宜性分析結果指出三個農地污染場址密集區適合採用太陽光電方案,剩下二個農地污染場址密集區適合採用農業方案。內部效益評估結

果說明五個密集區的場址,25年生命週期共能產出97,246,975~776,238,657元的內部效益,顯示污染農地整治後恢復耕作或是開發作為太陽能發電設施皆能帶來直接的經濟價值,具有內部效益;然而因為蒸發散量和期作天數的不確定性,太陽能發電量約為926.77~1162.01 kWh/kWp/yr,售電效益可能低於整治改善成本,而造成五個密集區內採太陽光電方案之場址產生約為0~-1,662,839元的內部成本。外部效益評估結果包含溫室氣體排放衝擊評估結果和農地生態系統服務價值評估結果,溫室氣體排放衝擊評估結果指出由於三個密集區以太陽光電方案再利用,因此五個密集區可產出約324,396,311~

409,605,211元的溫室氣體減緩效益;不過也因為三個密集區開發作為太陽能發電設施,因此造成五個密集區約-218,943,042~-276,225,400元的農地生態系統價值損失。整合以上兩項外部效益評估結果,五個農地污染場址密集區整治改善後再利用能產出約48,170,913~190,662,182元的外部效益,突顯將污染農地開發作為其他用途,會損失高額的農地生態系統服務效益,因此相較採用太陽光電方案,污染農地整治後回復耕作能創造更高的外部效益。 本評估工具最後一個步驟係整合外部效益評估結果和內部效益評估結果,透過以NPV方法計算農地污染場址再利用的生命週期淨效益。由於應用太陽光電方

案的場址再利用所產生的外部成本衝擊高於再生能源販售的效益,造成淨效益為負值,說明本研究區域內之污染農地不宜作為太陽能發電設施,應回復農業耕作以創造更高的淨效益。因此本研究建議五個密集區內的場址最佳再利用方案為農業方案,約能帶來1,602,586,602~1,966,861,607元的淨效益,證明整治改善污染農地場址能帶來換環境價值和實際經濟效益,提供兼顧環境面和社會經濟面的土地利用效益。