Google Pixel 6的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

Google Pixel 6的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦吳孟韋寫的 台灣絕景100攝影課:雲海、銀河、晨昏、夜景、四季、山中祕境 和兜哥的 AI安全之對抗樣本入門都 可以從中找到所需的評價。

另外網站Google Pixel 6 犀牛盾SolidSuit防摔背蓋手機殼也說明:犀牛盾推出一體成形SolidSuit軍規防摔背蓋手機殼,適用於Google Pixel 6 ,採用犀牛盾獨家材料ShockSpread™製成,於臺灣製造並經過多次研發嘗試,達成超越美國軍規落摔 ...

這兩本書分別來自太雅出版社 和機械工業所出版 。

國立政治大學 資訊管理學系 洪為璽所指導 洪御哲的 應用文字探勘於業配文揭露偵測 (2021),提出Google Pixel 6關鍵因素是什麼,來自於業配文、內容行銷、文字探勘、機器學習、自然語言處理。

而第二篇論文國立中正大學 電機工程研究所 余英豪所指導 廖國欽的 基於FPGA單晶片及像素趨勢車道線檢測法實現車道線感測系統之研究 (2021),提出因為有 自動駕駛、車道線辨識、即時處理系統、先進駕駛輔助系統、線性回歸的重點而找出了 Google Pixel 6的解答。

最後網站Google 更新Pixel 6 以求改善指紋辨識器表現 - Engadget則補充:在大量的用戶投訴下,Google 少見地在月中上線更新以求改善Pixel 6 系列的指紋辨識器表現。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Google Pixel 6,大家也想知道這些:

台灣絕景100攝影課:雲海、銀河、晨昏、夜景、四季、山中祕境

為了解決Google Pixel 6的問題,作者吳孟韋 這樣論述:

  Instagram 臺灣旅人誌 首本攝影作品集   人氣攝影師的自學筆記,公開個人攝影心法:   山林拍攝技巧 X 預判天象 X 掌握山的環境 X 構圖設定與思考   ◆ 全書分為六大主題攝影課:四季、晨昏、銀河、山中祕境、雲海、夜景   ◆ 以實拍作品呈現台灣山林絕景之美,分享各種拍攝實戰經驗   ◆ 帶你掌握最重要的4件事:如何預判天象、掌握山的環境、拍攝係數設定、構圖思考與後製   ◆ 作者詳加分析自己從零起步變成玩家的攝影練成之路,點出初、中、進階玩家需做的準備與學習重點   ◆ 各主題還有加強學習:針對不同季節、時間點、拍攝目標,完整剖析山林風景攝影的要領   這是一位日

夜逐山林之美的攝影師寫下的自學筆記彙整,教你在小小的框景方間,捕捉想要的畫面。   本書將台灣絕景分為「四季的奇幻旅程」、「星空銀河之天地探索」、「晨昏的夢想之旅」、「尋覓山林秘境」、「雲與海的波濤」、「回歸最初的起點」六大單元。收錄作者全心投入山林攝影後的每一次探險,經歷無數個重返與等待累積而成的經驗成果。   大自然瞬息萬變,山林拍攝從事前預測到拍攝當下是一系列繁複的準備過程。本書不僅僅傳授所需的技巧,幫助你拍出不同主題的特色、氛圍,也納入拍攝當下個人的角度和觀點,告訴攝影者如何思索自己拍攝的意圖。是一本集合技術性的指導與故事性的構圖思考,絕佳的山景攝影教學書籍。   |特別企劃 -

絕景攝影展|   臺灣旅人誌精選 最受喜愛的作品   「從我拍過成千上萬的照片之中,精選這二十張經典景色分享給大家。這些照片呈現我鏡頭裡許多難得的天文現象,除了有像極紐西蘭場景的魯冰花、壯闊如仙境的雲海繚繞、經典浪漫的全景弓形銀河照、難能可貴的天象萊狀雲,以及唯獨守候才能拾獲的絕美日出與夕陽。首先欣賞這二十件我心目中的佳作,接著,就和我一同進入山林世界的探險吧!」--本書作者 吳孟韋(摘自內容【Gallery】臺灣旅人誌精選,台灣最美20景) 本書特色   ◆容易閱讀,知識密度高。   ◆全書超過120幅珍貴攝影作品,以實拍攝影作品呈現台灣山林絕景之美。   ◆提供天氣預估、APP使用、

設備器材、構圖與參數設定等拍攝知識基礎。   ◆實用的攝影指導:   【照片故事】照片的幕後故事。包括如何勘景、構圖的想法、等待與學習等過程。   【拍攝手法】鏡頭、焦段、參數、快門的設定與抉擇   【光影】如何善用光影、光圈ISO值與輔助器材運用   【TIP】建議路線、推薦攝點、因應不同環境的個別準備 好評推薦   陳思宇|臺北市觀光傳播局 前局長   屠  潔|旅遊YouTuber、中英雙語主持人

Google Pixel 6進入發燒排行的影片

相信有不少人已經拿到 iPhone 13 系列手機了吧
用了快一周的你有遇到什麼災情嗎?
以往在初期的時候本來就都會出現不少的狀況
不過都是硬體為主
但是今年比較特殊
是軟體的災情比較早被發現
一起來看看發生了什麼事

【製作團隊】
企劃:莫娜
腳本:莫娜
攝影:莫娜
剪輯:高小宇
字幕:高小宇
監製:宇恩、Cookie、蜜柑

✨✨✨加入獺友快充組:https://supr.link/zZE8x

🔥 熱門影片 🔥
iPhone 13 新機、iPad mini 6、Apple Watch Series 7 都來了!2021 蘋果秋季發表會重點整理懶人包
👉https://supr.link/YgZHL

iPad mini 6 超進化!螢幕、規格和效能全面升級,和 iPad Air 4 比較哪款比較適合你?
👉https://supr.link/0wZdR

iPhone 13 系列值不值得買?誰適合買哪支?舊機降價現在入手是否更超值?一次幫你解答
👉https://supr.link/w9nkB

免費又正版的影音串流平台懶人包!這四個平台都可以讓你看劇看到飽!(愛奇藝、LINE TV、KKTV、LiTV)
👉https://supr.link/uffeY

Switch 遊戲推薦!精選十款不同類型遊戲,共同特點是越玩越上癮!
👉https://supr.link/Wteh8

五台萬元 (含) 以下的平板懶人包!Apple、三星、Lenovo、華為都有 最便宜 5000 不到
👉https://supr.link/lqSsP

【訂閱電獺少女 YouTube】 https://supr.link/o3WBV
【追蹤電獺少女 Instagram】 https://supr.link/nYIMY
【按讚電獺少女 Facebook】 https://supr.link/VAZd6
【電獺少女官方網站】 https://supr.link/AKiW8

應用文字探勘於業配文揭露偵測

為了解決Google Pixel 6的問題,作者洪御哲 這樣論述:

業配文是在廣告媒體內容中有目的地整合品牌或品牌說服性訊息,以換取贊助商的報酬。在網際網路與行動裝置的普及下,社群媒體快速成長,捧紅了許多「網紅」高影響力者,看上此高度個人化與可控制內容的特性,使廠商將資源投入在這些人身上,以獲取商品的曝光與銷售。但是業配文常常會有假分享真業配的問題,讓消費者認為是自己的真實體驗分享,而非商業贊助,可能誤導消費者進行消費,故本研究目的在於能否建立一個模型找出背後可能是未揭露的業配文章。首先,先搜集痞客邦百大部落客的資料,建立會揭露業配之部落客名冊,再搜集該部落客發表過的所有文章,藉由揭露文字標注業配文與非業配文。然後透過機器學習方法SVM、CNN與Google

所開發的深度語言模型BERT進行訓練與比較,最後以CNN平均得出最高的準確度83.625%,同時,在我們標注的未揭露業配文章資料中,CNN能夠偵測業配文的準確度為90.69%。最後,應用逐層相關傳播LRP解釋CNN模型,觀察哪些常出現業配文文字最可能被預測為業配文,比較模型與人為觀點,並藉此找出業配文的特徵,以提供給消費者進行判斷。

AI安全之對抗樣本入門

為了解決Google Pixel 6的問題,作者兜哥 這樣論述:

本書系統介紹對抗樣本的基本原理,從相關的背景知識開始,包含搭建學習對抗樣本的軟硬體環境、常用工具,帶領讀者快速上手實踐。本書作者在安全領域有多年實踐經驗,對業界常見的方法做了系統的歸納總結,包含大量案例,深入淺出,實踐性強。 主要內容包括:·對抗樣本相關的深度學習背景知識,如梯度、優化器、反向傳遞等。·如何搭建學習對抗樣本的軟硬體環境。·對抗樣本領域的一些常見圖像處理技巧。·常見的白盒攻擊演算法與黑盒攻擊演算法。·對抗樣本在目標檢測領域的應用。·對抗樣本的常見加固演算法。·常見的對抗樣本工具以及如何搭建NIPS對抗樣本競賽環境。·如何站在巨人的肩膀上,快速生成自己的對抗樣本,進行攻防對抗。

兜哥,百度安全實驗室AI模型安全負責人,具有10餘年安全從業經歷,曾任百度基礎架構安全負責人、Web安全產品線負責人。主要研究方向為對抗樣本、生成對抗網路。著有AI安全暢銷書籍《Web安全之機器學習入門》《Web安全之深度學習實戰》《Web安全之強化學習與GAN》。著名開源AI安全工具箱AdvBox的作者,Free Buf、雷鋒網、安全客特邀專欄作家,知名安全自媒體「兜哥帶你學安全」主編。 序一 序二 自序 前言 第1章 深度學習基礎知識 1 1.1 深度學習的基本過程及相關概念 1 1.1.1 數據預處理 1 1.1.2 定義網路結構 2 1

.1.3 定義損失函數 6 1.1.4 反向傳遞與優化器 7 1.1.5 範數 12 1.2 傳統的圖像分類演算法 13 1.3 基於CNN的圖像分類 14 1.3.1 局部連接 14 1.3.2 參數共用 15 1.3.3 池化 17 1.3.4 典型的CNN結構 18 1.3.5 AlexNet的結構 19 1.3.6 VGG的結構 19 1.3.7 ResNet50 20 1.3.8 InceptionV3 20 1.3.9 視覺化CNN 20 1.4 常見性能衡量指標 30 1.4.1 測試資料 30 1.4.2 混淆矩陣 31 1.4.3 準確率與召回率 31 1.4.4 準確度與F

1-Score 32 1.4.5 ROC與AUC 33 1.5 集成學習 34 1.5.1 Boosting演算法 35 1.5.2 Bagging演算法 37 1.6 本章小結 39 第2章 打造對抗樣本工具箱 40 2.1 Anaconda 41 2.2 APT更新源 45 2.3 Python更新源 45 2.4 Jupyter notebook 45 2.5 TensorFlow 49 2.6 Keras 50 2.7 PyTorch 51 2.8 PaddlePaddle 52 2.9 AdvBox 52 2.10 GPU伺服器 52 2.11 本章小結 55 第3章 常見深度學

習平臺簡介 56 3.1 張量與計算圖 56 3.2 TensorFlow 58 3.3 Keras 62 3.4 PyTorch 64 3.5 MXNet 67 3.6 使用預訓練模型 70 3.7 本章小結 76 第4章 影像處理基礎知識 77 4.1 圖像格式 77 4.1.1 通道數與圖元深度 77 4.1.2 BMP格式 80 4.1.3 JPEG格式 81 4.1.4 GIF格式 81 4.1.5 PNG格式 81 4.2 圖像轉換 81 4.2.1 仿射變換 81 4.2.2 圖像縮放 83 4.2.3 圖像旋轉 85 4.2.4 圖像平移 85 4.2.5 圖像剪切 86 4

.2.6 圖像翻轉 87 4.2.7 亮度與對比度 88 4.3 圖像去噪 89 4.3.1 高斯雜訊和椒鹽雜訊 90 4.3.2 中值濾波 91 4.3.3 均值濾波 93 4.3.4 高斯濾波 93 4.3.5 高斯雙邊濾波 94 4.4 本章小結 96 第5章 白盒攻擊演算法 97 5.1 對抗樣本的基本原理 97 5.2 基於優化的對抗樣本生成演算法 100 5.2.1 使用PyTorch生成對抗樣本 102 5.2.5 使用TensorFlow生成對抗樣本 106 5.3 基於梯度的對抗樣本生成演算法 109 5.4 FGM/FGSM演算法 110 5.4.1 FGM/FGSM基本

原理 110 5.4.2 使用PyTorch實現FGM 111 5.4.3 使用TensorFlow實現FGM 112 5.5 DeepFool演算法 115 5.5.1 DeepFool基本原理 115 5.5.2 使用PyTorch實現DeepFool 117 5.5.3 使用TensorFlow實現DeepFool 122 5.6 JSMA演算法 124 5.6.1 JSMA基本原理 124 5.6.2 使用PyTorch實現JSMA 126   生活中的深度學習 深度學習自2006年產生之後就受到科研機構、工業界的高度關注。最初,深度學習主要用於圖像和語音領域。從2

011年開始,穀歌研究院和微軟研究 院的研究人員先後將深度學習應用到語音辨識,使識別錯誤率下降了20%~30%。2012年6月,穀歌首席架構師Jeff Dean和斯坦福大學教授Andrew Ng主導著名的Google Brain項目,採用16萬個CPU來構建一個深層神經網路,並將其應用於圖像和語音的識別,最終大獲成功。 2016年3月,AlphaGo與圍棋世界冠軍、職業九段棋手李世石進行圍棋人機大戰,以4比1的總比分獲勝;2016年年末2017年年初,該程 序在中國棋類網站上以“大師”(Master)為註冊帳號與中日韓數十位圍棋高手進行快棋對決,連續60局無一敗績;2017年5月,在中國烏鎮

圍棋峰會上,它與排名世界第一的圍棋世界冠軍柯潔對戰,以3比0的總比分獲勝。AlphaGo的成功更是把深度學習的熱潮推向了全球,成為男女老少茶餘飯後關注的熱點話題。 現在,深度學習已經遍地開花,在方方面面影響和改變著人們的生活,比較典型的應用包括智慧家居、智慧駕駛、人臉支付和智慧安防。 深度學習的脆弱性 深度學習作為一個非常複雜的軟體系統,同樣會面對各種駭客攻擊。駭客通過攻擊深度學習系統,也可以威脅到財產安全、個人隱私、交通安全和公共安全(見圖0-1)。針對深度學習系統的攻擊,通常包括以下幾種。 1. 偷取模型 各大公司通過高薪聘請AI專家設計模型,花費大量資金、人力搜集訓練資料,又花費

大量資金購買GPU設備用於訓練模型,最後得到深度學習模型。深度學習模型的最終形式也就是從幾百KB到幾百MB不等的一個模型檔。深度學習模型對外提供服務的形式也主要分為雲模式的API,或者私有部署到使用者的移動 設備或資料中心的伺服器上。針對雲模式的API,駭客通過一定的遍歷演算法,在調用雲模式的API後,可以在本地還原出一個與原始模型功能相同或者類似的模型;針對私有部署到使用者的移動設備或資料中心的伺服器上,駭客通過逆向等傳統安全技術,可以把模型檔直接還原出來供其使用。偷取深度學習模型的過程如圖 0-2所示。 2. 數據投毒 針對深度學習的資料投毒主要是指向深度學習的訓練樣本中加入異常資料,導

致模型在遇到某些條件時會產生分類錯誤。如圖0-3所示。早期的資料投毒都 存在於實驗室環境,假設可以通過在離線訓練資料中添加精心構造的異常資料進行攻擊。這一攻擊方式需要接觸到模型的訓練資料,而在實際環境中,絕大多數情況都是公司內部在離線資料中訓練好模型再打包對外發佈服務,攻擊者難以接觸到訓練資料,攻擊難以發生。於是攻擊者把重點放到了線上學習的場景,即模型是利用線上的資料,幾乎是即時學習的,比較典型的場景就是推薦系統。推薦系統會結合使用者的歷史資料以及即時的訪問資料,共同進行學習和判斷,最終得到推薦結果。駭客正是利用這一可以接觸到訓練資料的機會,通過一定的演算法策略,發起訪問行為,最終導致推薦系統

產生錯誤。 3. 對抗樣本 對抗樣本由Christian Szegedy等人提出,是指在資料集中通過故意添加細微的干擾所形成的輸入樣本,這種樣本導致模型以高置信度給出一個錯誤的輸出。在正則化背景下,通過對抗訓練減少原有獨立同分佈的測試集的錯誤率,在對抗擾動的訓練集樣本上訓練網路。 簡單地講,對抗樣本通過在原始資料上疊加精心構造的人類難以察覺的擾動,使深度學習模型產生分類錯誤。以圖像分類模型為例,如圖0-4所示,通過在原始圖像上疊加擾動,對於肉眼來說,擾動非常細微,圖像看起來還是熊貓,但是圖像分類模型卻會以很大的概率識別為長臂猿。 下面以一個圖像分類模型為例,更加直接地解釋對抗樣本的基本原

理。通過在訓練樣本上學習,學到一個分割平面,在分割平面一側的為綠球,在分割平面另 外一側的為紅球。生成攻擊樣本的過程,就是在資料上添加一定的擾動,讓其跨越分割平面,從而把分割平面一側的紅球識別為綠球,如圖0-5所示。 對抗樣本按照攻擊後的效果分為Targeted Attack(定性攻擊)和Non-Targeted Attack(無定向攻擊)。區別在於Targeted Attack在攻擊前會設置攻擊的目標,比如把紅球識別為綠球,或者把麵包識別為熊貓,也就是說在攻擊後的效果是確定的;Non-Targeted Attack在攻擊前不用設置攻擊目標,只要攻擊後,識別的結果發生改變即可,可能會把麵包識

別為熊貓,也可能識別為小豬佩琪或者小豬喬治,如圖0-6所 示。 對抗樣本按照攻擊成本分為White-Box Attack(白盒攻擊)、Black-Box Attack(黑盒攻擊)和Real-World Attack/Physical Attack(真實世界/物理攻擊)。 White-Box Attack(見圖0-7)是其中攻擊難度最低的一種,前提是能夠完整獲取模型的結構,包括模型的組成以及隔層的參數情況,並且可以完整控制模型的輸入, 對輸入的控制細微性甚至可以到比特級別。由於White-Box Attack前置條件過於苛刻,通常作為實驗室的學術研究或者作為發起Black-Box Attac

k和Real-World Attack/Physical Attack的基礎。 Black-Box Attack相對White-Box Attack攻擊難度具有很大提高,Black-Box Attack完全把被攻擊模型當成一個黑盒,對模型的結構沒有瞭解,只能控制輸入,通過比對輸入和輸出的回饋來進行下一步攻擊,見圖0-8。 Real-World Attack/Physical Attack(見圖0-9)是這三種攻擊中難度最大的,除了不瞭解模型的結構,甚至對於輸入的控制也很弱。以攻擊圖像分類模型為例(見圖0-10),生成 的攻擊樣本要通過相機或者攝像頭採集,然後經過一系列未知的預處理後再輸入模型進

行預測。攻擊中對抗樣本會發生縮放、扭轉、光照變化、旋轉等。 常見檢測和加固方法 1. 深度學習脆弱性檢測 檢測深度學習脆弱性的過程,其實就是發起攻擊的過程,常見的白盒攻擊演算法列舉如下。 ILCM(最相似反覆運算演算法) FGSM(快速梯度演算法) BIM(基礎反覆運算演算法) JSMA(顯著圖攻擊演算法) DeepFool(DeepFool演算法) C/W(C/W演算法) 常見的黑盒攻擊方法列舉如下。 Single Pixel Attack(單圖元攻擊) Local Search Attack(本地搜索攻擊) 2. 深度學習脆弱性加固 針對深度學習脆弱性進行加固的常見方法主要包括以下幾種,

我們將重點介紹Adversarial training。 Feature squeezing(特徵凝結) Spatial smoothing(空間平滑) Label smoothing(標籤平滑) Adversarial training(對抗訓練) Virtual adversarial training (虛擬對抗訓練) Gaussian data augmentation (高斯資料增強) Adversarial training如圖0-11所示,其基本思路是,常見的對抗樣本生成演算法是已知的,訓練資料集也是已知的,那麼可以通過常見的一些對抗樣本工具箱,比如 AdvBox 或者FoolB

ox,在訓練資料的基礎上生成對應的對抗樣本,然後讓深度學習模型重新學習,讓它認識這些常見的對抗樣本,這樣新生成的深度學習模型就具有 了一定的識別對抗樣本的能力。 與Adversarial training思路類似的是Gaussian data augmentation。Gaussian data augmentation的基本原理是,對抗樣本是在原始資料上疊加一定的擾動,這些擾動非常接近隨機的一些雜訊。Adversarial training雖然簡單易於實現,但是技術上難以窮盡所有的攻擊樣本。Gaussian data augmentation直接在原始資料上疊加高斯雜訊,如圖0-12所示,k

為高斯雜訊的係數,係數越大,高斯雜訊越強,其他參數分別表示高斯雜訊的均 值和標準差。Gaussian data augmentation把訓練資料疊加了雜訊後,重新輸入給深度學習模型學習,通過增加訓練輪數、調整參數甚至增加模型層數,在不降低原有模型準確度的 情況下,讓新生成的深度學習模型具有了一定的識別對抗樣本的能力。 對抗樣本領域的最新進展 對抗樣本是AI安全研究的一個熱點,新的攻擊演算法和加固方法層出不窮,而且攻擊場景也從實驗室中的簡單圖像分類,迅速擴展到智慧音箱、無人駕駛等領 域。百度安全實驗室的最新研究報告《感知欺騙:基於深度神經網路(DNN)下物理性對抗攻擊與策略》成功入選Blac

kHat Europe 2018。報告展現了讓物體在深度學習系統的“眼”中憑空消失,在AI時代重現了大衛·科波菲爾的經典魔法。針對深度學習模型漏洞進行物理攻擊可行性研究 有著廣泛的應用前景,在自動駕駛領域、智慧安防領域、物品自動鑒定領域都有重要的實際意義。 如圖0-13所示,在時間t0的時候,當在車後顯示器中顯示正常logo時,YOLOv3可以正確識別目標車輛,而在t1時,切換到擾動後的圖片 時,它可以立刻讓目標車輛在YOLOv3面前變得無法辨識;在t2時,如圖0-14所示切換回正常的圖片,YOLOv3重新可以識別目標車輛。這是首次針 對車輛的物理攻擊的成功展示,與以往的學術論文相比,在攻擊

目標的大小、解析度的高低以及物理環境的複雜性等方面,在影響和難度上都是一個巨大提升。 Kan Yuan和Di Tang等人在論文《Stealthy Porn: Understanding Real-World Adversarial Images for Illicit Online Promotion》中介紹了黑產如何通過單色化、加雜訊、增加文字、仿射變化、濾波模糊化和遮蓋等方式讓違規圖片繞過目前主流的圖片內容檢測服務。這也標誌著對抗樣本技術已經從實驗室環境真正進入了網路對抗實戰。 國內安全人員在對抗樣本領域的研究成果得到了國際的普遍認可。朱軍等人指導的清華大學團隊曾在NIPS 2017

對抗樣本攻防競賽中奪冠,紀守領老師所在的 NESA Lab提出了一種新型的對抗性驗證碼,能防範來自打碼平臺等黑產的破解。  

基於FPGA單晶片及像素趨勢車道線檢測法實現車道線感測系統之研究

為了解決Google Pixel 6的問題,作者廖國欽 這樣論述:

車輛自動駕駛系統目前主要是由自動跟車 (Adaptive Cruise Control, ACC) 以及車道偏離警示 (Lane Departure Warning System, LDWS) 兩大系統所組成。然而,自動跟車系統在實現過程中,由於必須藉由前方車輛實現車輛跟隨功能,因此若無前方車輛時則無法實現此功能。反觀車道偏離警示系統是依據車道線軌跡來幫助車輛保持於車道內,因此具備較高實用性。在此,本研究特別針對車道感測進行研究。由於傳統的車道線感測必須仰賴高效率的電腦才能有效地完成運算,為了克服傳統車道線辨識的缺點,本研究專注於如何將車道線辨識演算法簡化,並實現在單晶片上,達到低功耗之目的

。本研究以單一數位相機及單一現場可程式邏輯閘陣列 (Field Programmable Gate Array, FPGA) 實線以精簡之硬體電路達到即時於白天及黃昏情況下進行車道線辨識。透過像素趨勢車道檢測法 (Pixel Trend Lane Detection, PTLD) 擷取特徵,並將所得之車道位置利用線性回歸 (Linear Regression, LR) 決定車道線的軌跡,再透過左右車道回歸線取得車道的中心線,藉此引導車輛穩定行駛於車道中。另外,本研究還搭配語音辨識擴充模組 (DFR0177 Voice Recognition) 來辨識由Google Map路線規劃所傳出的語音指

令。根據辨識的結果,輸出行車指令給FPGA,以此決定車輛轉彎或直線行車路線模式。根據本研究之實驗結果,在使用每秒90張畫面播放速度以及640×480影像解析度情況下,只需11 ms即可擷取車道線特徵。而由左右車道線線性回歸決定出的中心線與實際影像中的中心線,誤差僅在5個像素以內。故本研究不管在運算速度以及準確度上均符合實際運用需求,未來可以有效幫助車輛穩定行駛於車道,達成自動駕駛之目的。