Triton X 100 CMC的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

國立臺北科技大學 環境工程與管理研究所 陳孝行所指導 高玉丹清的 滲透性微生物燃料電池和膜蒸餾微生物燃料電池在發電和廢水處理中的研究性能 (2020),提出Triton X 100 CMC關鍵因素是什麼,來自於forward osmosis、microbial fuel cell、membrane distillation、water-energy nexus。

而第二篇論文國立陽明交通大學 微生物及免疫學研究所 黃雪莉所指導 朱國修的 滲透壓力對Pseudomonas nitroreducens TX1生長於聚乙氧基醇類界面活性劑之影響 (2020),提出因為有 滲透壓、Pseudomonas nitroreducens TX1、生物膜產量、移動能力、界面活性劑分解效益的重點而找出了 Triton X 100 CMC的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Triton X 100 CMC,大家也想知道這些:

滲透性微生物燃料電池和膜蒸餾微生物燃料電池在發電和廢水處理中的研究性能

為了解決Triton X 100 CMC的問題,作者高玉丹清 這樣論述:

Recently, bio-electrochemical system technologies are considered as an alternative by their potential role in pollutant removal and electricity generation from wastewater by microbial metabolism. Increasing demand for energy in the face of diminishing fossil fuel supply may lead to a global energy

crisis with major impacts on the environment and human health. Hence, this dissertation was aimed to introduce two potential technologies such as osmotic microbial fuel cell and membrane distillation microbial fuel cell. Firstly, osmotic microbial fuel cells have gained great interest as an alternat

ive energy conversion system for generating bioenergy and water reclamation through forward osmosis membranes. Recent studies about OsMFC could support the development of environmental-friendly energy production, wastewater treatment, and water reclamation (after recovering diluted draw solutions).F

irst of all, several types of inorganic salts were applied in an osmotic microbial fuel cell as catholyte/draw solutions such as NaCl (monovalent salt); MgCl2, CaCl2 (divalent salts), and EDTA-2Na (tetravalent salt). As a result, MgCl2 as divalent inorganic salt was found to be a potential catholyte

/draw solution due to high output power generation and high water flux. Although EDTA-2Na produced the lowest salt reversal flux at pH 8, the lowest output power was generated. To improve the performance of MgCl2 in terms of reducing salt reversal flux while enhancing power generation, non-ionic sur

factant TX114 was combined with different concentrations of MgCl2. Moreover, pH was also adjusted from 2 – 8 to evaluate the effects of pH on output power generation, water flux, and salt reversal flux. On the other hand, to improve the power produced by EDTA-2Na, different charges of a surfactant s

uch as cationic surfactant CTAB, anionic surfactant SDS, and nonionic surfactant TX114. As achieved results, anionic surfactant SDS at CMC was found to support the performance of EDTA-2Na. To investigate the performance of OsMFC in heavy metal removal, 12 mg/l hexavalent chromium Cr(VI) was mixed wi

th different concentrations of NaCl as a catholyte/draw solution. It was found that 98% Cr(VI) was removed when a pH of 0.2 M NaCl/Cr(VI) was adjusted to 2. The evidence of electrochemical behavior of NaCl mixing with Cr(VI) was described by cyclic voltammetry (CV) which showed oxidation-reduction p

eaks at 0.2 M NaCl mixing with Cr(VI) at pH 5.Similarly, to provide another multi-benefit similar to OsMFC, membrane distillation microbial fuel cell (MDMFC) was also introduced in this study. In general, the PTFE membrane was assembled in MFC to simultaneously produce water, treat wastewater, and g

enerate electricity. The temperature played a major role in the overall performance of the system. Expectantly, in comparison with OsMFC, MDMFC was proposed for direct water reclamation which was extracted from the anolyte through a thermal-driven process. Although it was the very first study about

MDMFC, it could be a promising technology to improve the relationship between water and energy in a positive way toward sustainable development.In this dissertation, the practical implementations of OsMFC and MDMFC were investigated. Either OsMFC or MDMFC demonstrated the potentials to effectively c

ontributing to the field of environmental engineering and technology. Optimistically, this dissertation is intended to encourage others to engage in a dialogue and work together to address the challenges for further practical developments of osmotic microbial fuel cells and membrane distillation mic

robial fuel cells.

滲透壓力對Pseudomonas nitroreducens TX1生長於聚乙氧基醇類界面活性劑之影響

為了解決Triton X 100 CMC的問題,作者朱國修 這樣論述:

滲透壓在微生物生理上扮演重要角色,一般係指細胞膜受到膜外物質濃度的影響,而致使水分進出的壓力。當細菌遭遇高滲透壓之壓力時,將啟動應變反應以適應及調控滲透壓力,從而導致其外觀及生理反應驟變。滲透壓力亦被證實阻礙P. aeruginosa PA14分解苯甲酸 (benzoate) 之能力,推測滲透壓力確實可以抑制生物降解的活性。TX1菌株係一可以分解聚乙氧基醇類界面活性劑--辛基苯酚聚乙氧基醇 (Otylphenol polyethoxylates, OPEOn) 之土壤微生物。我們實驗室針對該菌株建立一系列的研究及發現,以期建立其對於OPEOn之代謝途徑,本實驗探討滲透壓力對菌株TX1生長於O

PEOn中之影響。我們先確認本實驗所需溶液之滲透壓當量,並建立添加之滲透物滲透壓當量-濃度關係。0.5%之琥珀酸滲透壓約為200 mOsm;同時,高於臨界膠束濃度 (CMC) 之OPEOn對滲透壓當量不會造成影響。再者,我們確認離子性 (氯化鈉) 及非離子性物質 (蔗糖) 造成之滲透壓對菌株不會造成差異,因此實驗僅以氯化鈉做為滲透壓比較,而500、800 mOsm之滲透壓相當於0.29及0.47 M 之氯化鈉莫耳當量;500 mOsm之滲透壓造成TX1生長速率自0.32降至0.2 h-1、800 mOsm造成生長抑制;生物膜在500 mOsm及更高的滲透壓都受到抑制,產量僅41%;探討TX1之

移動性,本實驗探討swimming及swarming,兩者在500 mOsm滲透壓下都受到抑制 (65 %及34 %),特別的是,我們發現了TX1菌株其swarming圖案呈現如牛眼圖案,有別於Pseudomonas菌屬之樹突狀圖案。這些實驗結果顯示滲透壓力對TX1菌株會造成生理層面的抑制效果。其次,我們從基因層面上探討滲透壓力之影響,於基因庫中發現一潛在基因 ( adh3 ) 與PAO1菌株中之betA基因有極高之核苷酸及胺基酸序列相似性 ( 86.0及86.4 % )。該基因於革蘭氏陰性菌 ( Escherichia coli、Pseudomonas aeruginosa )、以及陽性菌

( Bacillus subtilis )皆高度保守,能轉譯出一膽鹼脫氫酶 (choline dehydrogenase) ,該酵素在菌株調控滲透壓反應中扮演重要角色。我們評量adh3 基因於滲透壓環境之基因表現量,滲透壓大於500 mOsm後,該基因之表現量顯著提升 (平均為2.4 ± 0.2 倍),同時,該基因於500 mOsm以下則沒有差異。同時,我們置換碳源,將原本的琥珀酸取代成OPEOn,以探討界面活性劑對前述實驗之影響。在0.5% OPEOn中,TX1之生物膜產量受到抑制、移動能力增強,該影響皆與OPEOn濃度無關,濃度即使小於CMC亦不受影響,本實驗證實TX1之部分生理特性受到O

PEOn之影響,但與其形成膠束之能力無關。相同地,我們探討基因層面之adh3基因表現,結果顯示adh3表現在各個濃度皆沒有差異,推測該基因不參與OPEOn之代謝。總結來說,滲透壓改變了環境之水活性 (water activity),對TX1菌株之生長、移動性、生物膜生合成以及界面活性劑分解效益造成了阻礙。