i網棧監視器的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列股價、配息、目標價等股票新聞資訊

i網棧監視器的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(美)戴維·A.帕特森寫的 計算機組成與設計:硬件/軟件接口(ARM版) 和(美)馬克·拉希諾維奇(美)大衛·A.所羅門(美)艾力克斯·伊納蘇的 深入解析Windows操作系統.下冊(第6版)都 可以從中找到所需的評價。

另外網站監視器公司也說明:3 天前 — 監視器材:電源線、訊號線:提供主機電源、傳輸影像訊號; 監視器安裝實績. 高雄、屏東及台南監視器安裝案例如六扇門火鍋、老賴茶棧、夢時代店家、九乘九 ...

這兩本書分別來自機械工業 和電子工業所出版 。

國立臺北大學 電機工程學系 薩馬尼乎曼所指導 施詠陞的 以物聯網為基礎之人-寵物互動 (2015),提出i網棧監視器關鍵因素是什麼,來自於物聯網、互動式系統、人機互動、智能機器人。

而第二篇論文國立臺灣師範大學 台灣史研究所 陳佳宏所指導 吳丞祐的 余登發與戰後臺灣民主運動 (2010),提出因為有 余登發、黑派、余家班、高雄縣長、余登發案、橋頭遊行、臺灣黨外人士助選團、中國民主黨的重點而找出了 i網棧監視器的解答。

最後網站qtime 包廂監視器則補充:qtime ps4 i網棧監視器u2監視器u2 ptt qtime高雄基隆qtime qtime公館ptt 壹網棧監視器e書漫有監視器嗎qtime監視器i網棧監視器壹網棧包廂有監視器嗎e書漫dcard 網咖包廂 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了i網棧監視器,大家也想知道這些:

計算機組成與設計:硬件/軟件接口(ARM版)

為了解決i網棧監視器的問題,作者(美)戴維·A.帕特森 這樣論述:

本書由2017年圖靈獎得主Patterson和Hennessy共同撰寫,是電腦體系結構領域的經典教材,強調軟硬體協同設計及其對性能的影響。 本書採用ARMv8體系結構,講解硬體技術、組合語言、電腦算數運算、流水線、記憶體層次結構以及I/O的基本原理。新內容涵蓋平板電腦、雲基礎設施、ARM(行動計算裝置)以及x86(雲計算)體系結構,新實例包括IntelCorei7、ARMCortex-A53以及NVIDIAFermiGPU。本書適合作為高等院校電腦專業的教材,也適合廣大專業技術人員參考。 出版者的話 讚譽 譯者序 前言 作者簡介 第1章 電腦的抽象與技術 1 1.1 引言

1 1.1.1 電腦應用的分類和特點 2 1.1.2 歡迎來到後PC時代 3 1.1.3 你能從本書中學到什麼 4 1.2 電腦體系結構中的8個偉大思想 6 1.2.1 面向摩爾定律的設計 6 1.2.2 使用抽象簡化設計 7 1.2.3 加速大概率事件 7 1.2.4 通過並行提高性能 7 1.2.5 通過流水線提高性能 7 1.2.6 通過預測提高性能 7 1.2.7 記憶體層次結構 7 1.2.8 通過冗餘提高可靠性 7 1.3 程式表像之下 8 1.4 硬體包裝之下 10 1.4.1 顯示器 11 1.4.2 觸控式螢幕 12 1.4.3 打開主機殼 13 1.4.4 資料的安全存儲

15 1.4.5 與其他電腦通信 16 1.5 處理器和記憶體製造技術 17 1.6 性能 20 1.6.1 性能的定義 20 1.6.2 性能的度量 22 1.6.3 CPU的性能及其度量因素 24 1.6.4 指令的性能 24 1.6.5 經典的CPU性能公式 25 1.7 功耗牆 28 1.8 滄海巨變:從單一處理器向多處理器轉變 29 1.9 實例:Intel Core i7基準測試 32 1.9.1 SPEC CPU基準測試程式 32 1.9.2 SPEC功耗基準測試程式 34 1.10 謬誤與陷阱 34 1.11 本章小結 36 1.12 歷史觀點與拓展閱讀 37 1.13 練習

題 38 第2章 指令:電腦的語言 42 2.1 引言 42 2.2 電腦硬體的操作 44 2.3 電腦硬體的運算元 46 2.3.1 記憶體運算元 47 2.3.2 常數或立即數運算元 50 2.4 有符號數和無符號數 51 2.5 電腦中指令的表示 56 2.6 邏輯操作 61 2.7 決策指令 64 2.7.1 迴圈 65 2.7.2 邊界檢查的簡便方法 67 2.7.3 case/switch語句 67 2.8 電腦硬體對過程的支援 68 2.8.1 使用更多的寄存器 69 2.8.2 過程嵌套 71 2.8.3 在棧中為新資料分配空間 73 2.8.4 在堆中為新資料分配空間 74

2.9 人機交互 76 2.10 LEGv8中的寬立即數和地址的定址 79 2.10.1 寬立即數 79 2.10.2 分支中的定址 80 2.10.3 LEGv8定址模式總結 82 2.10.4 機器語言解碼 82 2.11 並行與指令:同步 86 2.12 翻譯並啟動程式 88 2.12.1 編譯器 88 2.12.2 彙編器 89 2.12.3 連結器 90 2.12.4 載入器 92 2.12.5 動態連結程式庫 92 2.12.6 啟動Java程式 94 2.13 綜合實例:C排序程式 95 2.13.1 swap過程 95 2.13.2 sort過程 97 2.14 陣列和指標

101 2.14.1 用陣列實現clear 102 2.14.2 用指針實現clear 102 2.14.3 比較兩個版本的clear 103 2.15 高級主題:編譯C和解釋Java 104 2.16 實例:MIPS指令集 104 2.17 實例:ARMv7(32位元)指令集 105 2.18 實例:x86指令集 106 2.18.1 Intel x86的演進 107 2.18.2 x86寄存器和資料定址模式 108 2.18.3 x86整數操作 110 2.18.4 x86指令編碼 112 2.18.5 x86總結 112 2.19 實例:ARMv8指令集的其他部分 113 2.19.1 

完整的ARMv8整數算術邏輯指令 114 2.19.2 完整的ARMv8整數資料傳輸指令 116 2.19.3 完整的ARMv8分支指令 117 2.20 謬誤與陷阱 118 2.21 本章小結 119 2.22 歷史觀點與拓展閱讀 121 2.23 練習題 121 第3章 電腦的算數運算 128 3.1 引言 128 3.2 加法和減法 128 3.3 乘法 131 3.3.1 順序乘法演算法及硬體 131 3.3.2 有符號乘法 134 3.3.3 更快速的乘法 134 3.3.4 LEGv8中的乘法 134 3.3.5 小結 135 3.4 除法 135 3.4.1 除法演算法及硬體

135 3.4.2 有符號除法 137 3.4.3 更快速的除法 138 3.4.4 LEGv8中的除法 138 3.4.5 小結 139 3.5 浮點運算 140 3.5.1 浮點表示 141 3.5.2 異常和中斷 142 3.5.3 IEEE 754浮點標準 142 3.5.4 浮點加法 145 3.5.5 浮點乘法 148 3.5.6 LEGv8中的浮點指令 150 3.5.7 算術精確性 154 3.5.8 小結 156 3.6 並行與電腦算術:子字並行 157 3.7 實例:x86中的流處理SIMD擴展和高級向量擴展 158 3.8 實例:其他的ARMv8算術指令 160 3.8.

1 完整的ARMv8整數和浮點算術指令 160 3.8.2 完整的ARMv8 SIMD指令 161 3.9 加速:子字並行和矩陣乘法 163 3.10 謬誤與陷阱 166 3.11 本章小結 168 3.12 歷史觀點與拓展閱讀 171 3.13 練習題 171 第4章 處理器 175 4.1 引言 175 4.1.1 一種基本的LEGv8實現 176 4.1.2 實現概述 176 4.2 邏輯設計的一般方法 178 4.3 建立資料通路 180 4.4 一種簡單的實現機制 187 4.4.1 ALU控制 187 4.4.2 主控制單元的設計 188 4.4.3 資料通路的操作 191 4.

4.4 完成控制單元 194 4.4.5 為什麼不使用單週期實現 195 4.5 流水線概述 197 4.5.1 面向流水線的指令集設計 200 4.5.2 流水線冒險 200 4.5.3 流水線概述小結 206 4.6 流水線資料通路及其控制 207 4.6.1 圖形化表示的流水線 215 4.6.2 流水線控制 218 4.7 數據冒險:旁路與阻塞 221 4.8 控制冒險 231 4.8.1 假定分支不發生 231 4.8.2 減少分支延遲 232 4.8.3 動態分支預測 234 4.8.4 流水線小結 236 4.9 異常 236 4.9.1 LEGv8體系結構中的異常處理 237

4.9.2 流水線實現中的異常 238 4.10 指令級並行 241 4.10.1 推測的概念 242 4.10.2 靜態多發射 243 4.10.3 動態多發射 246 4.10.4 動態流水線調度 247 4.10.5 能耗效率與高級流水線 249 4.11 實例:ARM Cortex-A53和Intel Core i7流水線 250 4.11.1 ARM Cortex-A53 251 4.11.2 Intel Core i7 920 253 4.11.3 Intel Core i7 920的性能 255 4.12 加速:指令級並行和矩陣乘法 256 4.13 高級主題:採用硬體設計語言描

述和建模流水線的數位設計技術以及更多流水線示例 258 4.14 謬誤與陷阱 258 4.15 本章小結 259 4.16 歷史觀點與拓展閱讀 260 4.17 練習題 260 第5章 大容量和高速度:開發記憶體層次結構 271 5.1 引言 271 5.2 記憶體技術 275 5.2.1 SRAM技術 275 5.2.2 DRAM技術 275 5.2.3 快閃記憶體 277 5.2.4 磁碟記憶體 277 5.3 cache的基本原理 279 5.3.1 cache訪問 280 5.3.2 cache缺失處理 285 5.3.3 寫操作處理 285 5.3.4 cache實例:Intrin

sity FastMATH處理器 287 5.3.5 小結 289 5.4 cache性能的評估和改進 289 5.4.1 通過更靈活的塊放置策略來減少cache缺失 292 5.4.2 在cache中查找塊 295 5.4.3 替換塊的選擇 296 5.4.4 使用多級cache減少缺失代價 297 5.4.5 通過分塊進行軟體優化 299 5.4.6 小結 303 5.5 可信記憶體層次結構 303 5.5.1 失效的定義 303 5.5.2 糾1檢2漢明碼(SEC/DED) 305 5.6 虛擬機器 308 5.6.1 虛擬機器監視器的要求 309 5.6.2 指令集體系結構(缺乏)對虛

擬機器的支援 309 5.6.3 保護和指令集體系結構 310 5.7 虛擬記憶體 310 5.7.1 頁的存放和查找 313 5.7.2 缺頁故障 315 5.7.3 用於大型虛擬位址的虛擬記憶體 316 5.7.4 關於寫 318 5.7.5 加快位址轉換:TLB 318 5.7.6 Intrinsity FastMATH TLB 319 5.7.7 集成虛擬記憶體、TLB和cache 322 5.7.8 虛擬記憶體中的保護 323 5.7.9 處理TLB缺失和缺頁 324 5.7.10 小結 326 5.8 記憶體層次結構的一般框架 328 5.8.1 問題1:塊放在何處 328 5.8

.2 問題2:如何找到塊 329 5.8.3 問題3:cache缺失時替換哪一塊 330 5.8.4 問題4:寫操作如何處理 330 5.8.5 3C:一種理解記憶體層次結構行為的直觀模型 331 5.9 使用有限狀態機控制簡單的cache 332 5.9.1 一個簡單的cache 333 5.9.2 有限狀態機 333 5.9.3 一個簡單cache控制器的有限狀態機 335 5.10 並行與記憶體層次結構:cache一致性 336 5.10.1 實現一致性的基本方案 337 5.10.2 監聽協議 337 5.11 並行與記憶體層次結構:廉價冗餘磁碟陣列 339 5.12 高級主題:實現c

ache控制器 339 5.13 實例:ARM Cortex-A53和Intel Core i7的記憶體層次結構 339 5.14 實例:ARMv8系統的剩餘部分以及特殊指令 343 5.15 加速:cache分塊和矩陣乘法 345 5.16 謬誤與陷阱 346 5.17 本章小結 349 5.18 歷史觀點與拓展閱讀 350 5.19 練習題 350 第6章 並行處理器:從用戶端到雲 362 6.1 引言 362 6.2 創建並行處理常式的難點 364 6.3 SISD、MIMD、SIMD、SPMD和向量 367 6.3.1 x86中的SIMD:多媒體擴展 368 6.3.2 向量 368

6.3.3 向量與標量 370 6.3.4 向量與多媒體擴展 370 6.4 硬體多執行緒 372 6.5 多核和其他共用記憶體多處理器 375 6.6 圖形處理單元 378 6.6.1 NVIDIA GPU體系結構簡介 379 6.6.2 NVIDIA GPU存儲結構 380 6.6.3 正確理解GPU 381 6.7 集群、倉儲式電腦和其他消息傳遞多處理器 383 6.8 多處理器網路拓撲簡介 386 6.9 與外界通信:集群網路 389 6.10 多處理器基準測試程式和性能模型 389 6.10.1 性能模型 391 6.10.2 Roof?line模型 392 6.10.3 兩代Op

teron的比較 393 6.11 實例:Intel Core i7 960和NVIDIA Tesla GPU的評測及Roof?line模型 396 6.12 加速:多處理器和矩陣乘法 399 6.13 謬誤與陷阱 402 6.14 本章小結 403 6.15 歷史觀點與拓展閱讀 405 6.16 練習題 405 附錄A 邏輯設計基礎 414 索引 470 網路內容 附錄B 圖形處理單元 附錄C 控制器的硬體實現 附錄D RISC指令集體系結構 術語表 擴展閱讀

以物聯網為基礎之人-寵物互動

為了解決i網棧監視器的問題,作者施詠陞 這樣論述:

本論文主要目標是以增進與改良飼主與寵物的互動為基礎,設計並開發出一套嶄新的寵物互動裝置。隨著現在逐漸繁忙的社會,以及老年化、少子化的影響,導致人口結構的改變,人與人之間的關係亦不同於以往過去的社會,故許多人會將情感轉而寄託在寵物上,然而大部分的飼主因工作或行程的繁忙,以致無法充分的照料與關注的自己的寵物.而導致了寵物不論是身理上的影響或是心理上的傷害。為了解決上述問題,我們設計了此套飼主與寵物間的智慧型互動裝置,以彌補飼主與寵物之間的距離,本研究是以物聯網的概念為基礎,以建構在Linux系統上的Raspberry Pi電路板作為開發平台的概念,所提出的一套系統;供飼主能夠透過智慧型手機,經由

網路與寵物做及時的通信;於輸入端使用者能夠透過此套系統的視覺模塊,獲得寵物目前的視角畫面,而輸出模塊能夠透過伺服馬達,來控制寵物身上的穿戴設備達到餵食的目的。在未來,我們期望這個系統能夠獲得再更進一步的改善,在遠端飼主便能進行即時的實體互動,猶如飼主與寵物身處在同一物理空間。

深入解析Windows操作系統.下冊(第6版)

為了解決i網棧監視器的問題,作者(美)馬克·拉希諾維奇(美)大衛·A.所羅門(美)艾力克斯·伊納蘇 這樣論述:

本書是Windows技術權威參考書的最新版本,本書主要介紹了基於Windows 7 and Windows Server 2008 R2的核心技術與底層技術,全面闡釋Windows技術機理,是廣大Windows開發人員必備的參考書。 Mark Russinovich(馬克·拉希諾維奇)是微軟windows Azure組技術人員,是Sysinternals工具的作者之一,合著了《深入解析Windows作業系統》系列圖書;David A.Solomon(大衛·A.所羅門)是《深入解析Windows作業系統》系列圖書的合著者,並為全球成千上萬的開發人員和IT專業人士,包括微軟員

工,講授Windows內幕課程。他時常在微軟舉辦的會議中發言,包括TechNet和PDC。 范德成,2004年畢業于上海交通大學,在微軟和 SAP公司有多年專案經驗,構建了微型開源專案Robbie’s Shell。   潘愛民,任職于阿裡巴巴,長期從事軟體和系統技術的研究與開發工作,撰寫了大量軟體技術文章,著譯了多部經典計機圖書,在國內外學術刊物上發 表了30多篇文章。曾經任教於北京大學和清華大學(兼職),後進入工業界,先後任職于微軟亞洲研究院、盛大網路發展有限公司和阿裡雲計算有限公司,目前也 是工信部移動作業系統專家組成員。潘愛民先生獲得了數學學士學位和電腦科學博士學位,主要研究領域包括軟

體設計、資訊安全、作業系統和互聯網技術。 第8章 I/O系統1 8.1I/O系統元件1 I/O管理器3 典型的I/O處理過程4 8.2設備驅動程式5 設備驅動程式的類型5 WDM驅動程式6 分層的驅動程式7 實驗:查看已載入的驅動程式清單9 驅動程式的結構11 驅動程式物件和設備物件13 實驗:看一看設備物件15 實驗:顯示驅動程式和設備物件17 打開設備18 實驗:查看設備控制碼21 實驗:查看Windows設備名稱之間的映射23 8.3I/O處理24 I/O類型24 同步I/O和非同步I/O24 快速I/O25 實驗:查看一個驅動程式登記的快速I/O常式25 映射文件I

/O和文件緩存26 分散/聚集I/O27 I/O請求包27 IRP棧單元28 實驗:查看驅動程式的分發常式29 實驗:查看一個執行緒的未完成IRP29 IRP緩衝區管理30 針對單層驅動程式的I/O請求32 為一個中斷提供服務33 完成一個I/O請求34 同步36 針對分層的驅動程式的I/O請求38 實驗:查看一個設備棧39 實驗:查看IRP40 執行緒無關I/O45 I/O取消45 用戶發起的I/O取消46 執行緒終止時的I/O取消47 實驗:調試一個無法被殺死的進程48 I/O完成埠49 IoCompletion對象50 使用完成埠50 I/O完成埠操作52 I/O優先順序支持54 I/O

優先順序54 優先化策略55 I/O優先順序反轉的避免(I/O優先順序繼承)57 I/O優先順序提升和撞升57 實驗:“非常低”和“正常”I/O輸送量的對比58 實驗:I/O優先順序提升/撞升的性能分析59 頻寬預留(計畫的檔I/O)60 容器通知60 驅動程式檢驗器(DriverVerifier)61 8.4核心模式驅動程式框架(KMDF)63 KMDF驅動程式的結構和操作64 實驗:顯示KMDF驅動程式65 KMDF資料模型66 KMDF的I/O模型69 8.5使用者模式驅動程式框架(UMDF)72 8.6隨插即用(PnP)管理器76 隨插即用支持的級別77 驅動程式對於隨插即用的支援77

驅動程式載入、初始化和安裝79 Start值80 設備列舉81 實驗:將設備樹轉儲出來84 設備棧85 設備棧的驅動程式載入86 實驗:在裝置管理員中查看詳細的devnode資訊88 驅動程式安裝90 實驗:檢查一個驅動程式的INF檔92 實驗:查看目錄(catalog)檔93 8.7電源管理器94 電源管理器的操作96 驅動程式的電源操作97 實驗:查看一個驅動程式的電源映射關係97 實驗:查看系統的電源能力和策略98 驅動程式和應用程式對於設備電源的控制100 電源可用性請求100 實驗:在調試器中查看一個電源可用性請求101 實驗:利用Powercfg查看電源可用性請求103 處理器電

源管理(PPM)103 核心停運的策略104 利用率函數105 實驗:查看利用率和頻率的資訊106 實驗:查看利用率和頻率的歷史107 演算法覆蓋108 增加/減少動作108 各種閾值和策略的設置109 實驗:查看當前的核心停運策略111 “性能檢查”演算法112 實驗:查看當前的PPM檢查資訊116 8.8本章總結118 第9章 存儲管理119 9.1有關存儲的術語119 9.2磁片設備120 旋轉磁片120 磁片的磁區格式120 固態硬碟122 NAND型快閃記憶體122 檔的刪除和irim命令124 9.3磁片驅動程式125 Winload125 磁片類、埠和小埠驅動程式126 iSC

SI驅動程式127 多路徑I/O(MPIO)驅動程式128 實驗:觀察物理磁片I/O130 磁片設備物件130 分區管理器131 9.4卷的管理132 基本磁片133 MBR風格的分區133 GPT(GUID分區表)分區方案133 基本磁片卷管理器134 動態磁片135 LDM資料庫135 實驗:使用LDMDump來查看LDM資料庫137 LDM和GPT或MBR風格的分區方案139 動態磁片的卷管理器140 多分區卷的管理140 跨距卷141 條帶卷142 實驗:觀察鏡像磁碟區的I/O操作143 RAID—5卷145 卷名字空間145 掛載管理器146 掛載點147 卷的掛載148 實驗:查看

VPB149 卷的I/O操作152 虛擬磁片服務153 9.5虛擬硬碟(VHD檔)支援155 附載VHD的操作156 嵌套的檔案系統156 9.6BitLocker驅動器加密157 加密金鑰159 可信平臺模組(TPM)161 BitLocker引導過程163 BitLocker金鑰的恢復165 全卷加密驅動程式166 BitLocker的管理167 BitLockerToGo168 9.7卷影像(shadow)拷貝服務170 影像拷貝170 “克隆”影像拷貝170 “寫時複製”影像拷貝170 VSS的架構170 VSS的操作171 影像拷貝提供者172 實驗:查看Microsoft影像拷貝提

供者的過濾型設備物件173 Windows中的用途174 備份174 實驗:查看影像卷的設備物件174 “之前的版本”和系統還原175 實驗:導航到“之前的版本”176 實驗:映射卷影像設備物件177 9.8本章總結178 第10章 記憶體管理179 10.1記憶體管理器簡介179 記憶體管理器元件180 內部同步181 檢查記憶體的使用情況182 實驗:查看系統記憶體信息182 10.2記憶體管理器提供的服務184 大頁面和小頁面185 保留頁面和提交頁面187 實驗:保留的頁面對比提交的頁面188 提交限額190 鎖住記憶體190 分配細微性191 共用記憶體和映射檔192 實驗:查看記

憶體映射檔193 保護記憶體194 “不可執行”頁面保護196 實驗:查看進程上的DEP保護199 軟體的資料執行保護200 寫時複製201 位址窗口擴展203 10.3核心模式堆(系統記憶體池)204 記憶體池的大小205 實驗:確定最大的池大小值206 監視記憶體池的使用208 實驗:診斷記憶體池洩漏210 快查表(Look—AsideList)211 實驗:查看系統的快查表212 10.4堆管理器212 堆的類型213 堆管理器結構214 堆同步215 低碎片堆215 堆的安全特性216 堆的調試特性217 pageheap218 容錯堆218 10.5虛擬位址空間的佈局結構219 x8

6位址空間的佈局結構221 實驗:檢查一個應用程式能否感知大位址空間222 x86系統位址空間的佈局結構223 x86會話空間224 實驗:查看會話224 實驗:查看會話空間的使用情況225 系統分頁表項目(PTE,PageTableEntry)226 實驗:查看會話空間的使用情況226 64位元位址空間佈局結構227 x64虛擬定址的限制230 Windowsx64的16TB限制231 動態的系統虛擬位址空間管理233 實驗:查詢系統虛擬位址的用量234 實驗:設置系統虛擬位址的限制值235 系統的虛擬位址空間配額236 使用者位址空間的佈局結構237 實驗:對使用者虛擬位址空間進行分析23

8 映射隨機化239 棧的隨機化240 堆的隨機化240 內核位址空間中的ASLR240 對安全性緩和措施的控制240 實驗:查看進程上的ASLR保護241 10.6地址轉譯241 x86虛擬位址轉譯242 頁目錄245 實驗:檢查頁目錄和PDE245 頁表和分頁表項目246 分頁表項目中硬體和軟體的“寫”位元247 頁面內的位元組248 地址轉譯快查緩衝區248 實體位址擴充(PAE)249 實驗:轉譯地址251 x64虛擬位址轉譯253 IA64虛擬位址轉譯254 10.7分頁錯誤處理255 無效PTE256 原型PTE258 頁面換入I/O259 衝突的分頁錯誤260 聚簇的分頁錯誤26

0 分頁檔261 實驗:查看系統分頁檔262 提交用量和系統提交限額263 提交用量和分頁檔的大小266 實驗:利用工作管理員來查看分頁檔使用量266 10.8棧268 用戶棧268 實驗:創建最大數量的執行緒268 內核棧269 實驗:觀察內核棧的使用量269 DPC棧270 10.9虛擬位址描述符270 進程的VAD271 實驗:查看虛擬位址描述符272 旋轉VAD272 10.10NUMA273 10.11記憶體區物件274 實驗:查看記憶體區物件275 實驗:查看控制區域277 10.12驅動程式檢驗器280 10.13頁面幀編號資料庫284 實驗:查看PFN資料庫287 頁面清單的動

態變化288 實驗:空閒清單和零頁面清單289 實驗:已修改列表和備用列表291 頁面優先順序296 實驗:觀察區分優先順序的備用列表298 已修改頁面寫出器299 PFN資料結構301 實驗:查看PFN項304 10.14實體記憶體的限制305 Windows客戶版本的限制306 32位元客戶的有效記憶體限制307 10.15工作集309 按需換頁309 邏輯預取器310 實驗:窺探預取文件內部312 實驗:觀察預取檔的讀和寫312 放置策略313 工作集管理314 實驗:查看進程工作集大小316 實驗:工作集與虛擬大小316 實驗:在調試器中查看工作集列表317 平衡集管理器和交換器318

系統工作集319 記憶體通知事件320 實驗:查看記憶體資源通知事件321 10.16主動式記憶體管理(Superfetch)322 各個元件322 跟蹤過程和日誌記錄324 場景325 頁面優先順序和重平衡326 魯棒性能328 RAM優化軟體329 ReadyBoost330 ReadyDrive331 統一緩存332 進程反射334 實驗:利用Preflect來觀察進程反射的行為336 10.17本章總結337 第11章 緩存管理器338 11.1緩存管理器的關鍵特性338 單個中心化的系統緩存339 記憶體管理器339 快取一致性339 虛擬塊緩存341 流式緩存機制341 對可恢

復檔案系統的支持341 11.2緩存的虛擬記憶體管理342 11.3緩存的大小344 緩存的虛擬大小344 緩存的工作集大小344 實驗:查看系統緩存的工作集345 緩存的物理大小345 11.4緩存的資料結構347 系統範圍的緩存資料結構347 實驗:查看系統緩存的工作集349 針對每個檔的緩存資料結構350 實驗:查看共用的和私有的緩存表353 11.5檔案系統介面355 從緩存中來回拷貝資料356 通過映射和鎖定介面進行緩存356 通過直接記憶體存取介面進行緩存357 11.6快速I/O357 11.7預讀(ReadAhead)和滯後寫(WriteBehind)359 智能預讀359 回

寫緩存(Write—BackCaching)和延遲寫(LazyWriting)361 實驗:觀察緩存管理器的活動情況362 禁止一個檔的延遲寫出行為367 強迫緩存被直寫(write—through)到磁片上367 刷新映射文件367 實驗:觀察緩存的刷新368 寫節流(WriteThrottling)369 實驗:查看寫節流參數370 系統執行緒370 11.8本章總結371 第12章 檔案系統372 12.1Windows檔案系統格式373 CDFS373 UDF374 FAT12、FAT16和FAT32374 exFAT377 NTFS377 12.2檔案系統驅動程式總體結構378 本

地FSD379 遠程FSD380 鎖定381 實驗:查看已註冊檔案系統的列表383 檔案系統操作387 顯式文件I/O388 記憶體管理器的修改頁面寫出器和映射頁面寫出器392 緩存管理器的延遲寫出器(LazyWriter)392 緩存管理器的預讀執行緒392 記憶體管理器的分頁錯誤處理器393 檔案系統過濾型驅動程式393 進程監視器393 實驗:查看進程監視器的過濾型驅動程式394 12.3診斷檔案系統的問題395 進程監視器的基本和高級模式395 實驗:在一個空閒系統上查看檔案系統的活動395 進程監視器診斷技巧396 12.4公用日誌檔案系統397 列集操作397 日誌的類型398 日

誌的佈局結構400 日誌序號401 日誌塊401 所有者頁面402 虛擬LSN到物理LSN的轉譯403 管理策略404 12.5NTFS設計目標和特性404 高端(High—End)檔案系統的需求404 可恢復性405 安全性405 資料冗余和容錯能力405 NTFS的高級特性406 多資料流程406 實驗:查看資料流程408 基於Unicode的名稱408 通用的索引設施409 動態的壞簇重新映射409 硬連結(link)和交接(junction)409 實驗:創建一個硬連結410 符號(軟)連結和交接(junction)410 實驗:創建一個符號連結412 壓縮檔和稀疏文件412 變化日誌

413 針對每個用戶的卷配額413 連結跟蹤414 加密415 POSIX支持416 磁碟重組416 動態分區417 12.6NTFS檔案系統驅動程式419 12.7NTFS在磁片上的結構421 卷(volume)421 簇(cluster)422 主檔案表格(MFT)423 實驗:查看NTFS信息425 檔記錄號426 檔記錄426 檔案名429 隧道傳輸431 駐留的和非駐留的屬性432 資料壓縮和稀疏文件435 壓縮稀疏資料435 壓縮非稀疏資料437 稀疏文件439 變化日誌檔439 實驗:讀取變化日誌441 索引442 對象ID444 配額跟蹤444 統一的安全性445 重解析點44

7 事務支援447 隔離性448 實驗:理解和管理事務449 事務型API450 資源管理器451 實驗:查詢資源管理器的資訊452 磁片上的實現453 日誌的實現454 恢復的實現455 12.8NTFS的恢復支持455 設計456 中繼資料日誌記錄457 日誌檔服務(LFS)457 日誌記錄類型459 恢復461 分析掃描(AnalysisPass)462 重做掃描(RedoPass)463 撤銷掃描(UndoPass)463 NTFS的壞簇恢復465 自我修復468 12.9加密檔案系統(EFS)安全性469 第一次加密一個檔472 加密檔資料473 解密過程474 加密檔的備份474

實驗:查看EFS信息475 加密檔的複製475 12.10本章總結476 第13章 啟動和停機477 13.1引導過程477 BIOS引導準備477 BIOS引導磁區和Bootmgr481 UEFI引導過程495 從iSCSI引導496 初始化內核和執行體子系統497 實驗:載入器參數塊497 Smss、Csrss和Wininit504 未完成的檔重命名操作507 ReadyBoot509 自動啟動的映射檔510 實驗:Autoruns511 13.2引導和啟動問題的故障檢查511 最後已知的好配置512 安全模式512 安全模式下的驅動程式載入513 能感知安全模式的使用者程式514 安全

模式下的引導日誌515 Windows恢復環境(WinRE)516 引導狀態檔519 解決常見的引導問題520 MBR損壞520 引導磁區損壞520 BCD的錯誤配置520 系統檔損壞521 Windows資源保護522 System儲巢損壞523 啟動畫面之後的崩潰或者掛起523 13.3停機525 實驗:驗證HungAppTimeout值526 13.4本章總結528 第14章 崩潰轉儲分析529 14.1Windows為什麼會崩潰529 14.2藍屏530 Windows崩潰的原因531 14.3診斷崩潰問題533 14.4崩潰轉儲文件535 實驗:查看轉儲檔的資訊539 崩潰轉儲的生

成540 14.5Windows錯誤報告542 14.6線上崩潰分析543 14.7基本的崩潰轉儲分析545 Notmyfault545 基本的崩潰轉儲分析546 詳細的分析547 14.8使用崩潰診斷工具549 緩衝區溢位、記憶體破壞和特殊記憶體池550 實驗:通過驅動程式檢驗器啟用特殊記憶體池552 代碼改寫和系統代碼防寫553 14.9高級的崩潰轉儲分析554 棧破壞555 掛起的或無回應的系統557 實驗:利用LiveKd來生成Hyper—V客戶的轉儲559 當沒有崩潰轉儲時561 實驗:附載一個內核調試器562 14.10對常見停止代碼的分析564 0xD1—DRIVER_IRQL_

NOT_LESS_OR_EQUAL564 0x8E—KERNEL_MODE_EXCEPTION_NOT_HANDLED566 0x7F—UNEXPECTED_KERNEL_MODE_TRAP567 0xC5—DRIVER_CORRUPTED_EXPOOL569 硬體故障571 實驗:藍屏螢幕保護裝置程式572 14.11本章小結572 譯者序一 在所有介紹Windows作業系統的圖書中,我相信都離不開Windows Internals系列提供的資訊。除了公開可見到的Windows原始程式碼以外,本書是披露Windows系統機理最為詳盡的一份資料,尤其對於 Windows的每

一個最新版本。本書第6版專門針對Windows 7和Windows Server 2008 R2進行了大幅度更新。由於篇幅的增加,這一版本改成了上下兩冊來發行,由此也可見本書的“分量”。本書上冊中文版已於2014年4月出版,這幾年間,我 經常收到讀者的詢問,本書下冊是否出版。現在,下冊中文版終於要出版了,讀者們可以如願看到本書了。 在Windows作業系統的發展歷程 中,Windows 7是一個具有特殊意義的版本。它可以算得上是最為複雜的單機作業系統,無論是從代碼規模、代碼複雜度,還是從系統適應場景的複雜程度,都超過了以前所有的 版本。從某種意義上,Windows 7代表了軟體工程的一個頂峰

——人類可以構造出如此複雜且能穩定工作的軟體系統!與此相對應,要用一本書來涵蓋其中的各種機理也同樣是一項艱巨的任務,本書作者基於他們過去所做的大量工作,以及對Windows的深入理解,出色地完成了這一詮釋工作。 本書的權威性毋庸置疑。Mark Russinovich因在Windows內核探索方面所作出的貢獻而成為Microsoft Fellow(現為Azure CTO),本書中用到的大量Sysinternals工具均出自他的手筆。David Solomon長期從事Windows NT內部機理的培訓,他不僅在全球各地培訓Windows系統程式師,甚至也為Microsoft的內部員工提供Wind

ows內核培訓服務,他從本書第 2版開始奠定了卓有成效的敘述風格。Alex Ionescu是一名年輕的駭客型Windows專家,曾經為ReactOS(一個開源的作業系統專案,旨在相容Windows 2000/XP/Server 2003的應用程式)編寫了絕大多數內核代碼。他曾經發現和報告了一些與Windows內核相關的軟體漏洞,也跟David Solomon一起講授Windows內部機理的課程。有如此強大的作者組合,再加上Microsoft的內部支援(包括提供原始程式碼,以及Windows 開發組的細緻解釋),本書無疑是Windows最新版本的第一手技術資料。 每一個對Windows作業系統

有濃厚興趣的讀者都不應該錯過這本書。 本書上冊介紹了Windows的系統架構、系統機制、管理機制、進程與執行緒、安全性和網路。下冊是上冊的直接延續,共有7章,分別介紹了Windows I/O、存儲管理、記憶體管理、緩存管理器、檔案系統、啟動與停機,以及崩潰轉儲分析。每一章都是一個重要話題,讀者既可以在上冊的基礎上繼續深入鑽研 Windows各個子系統,也可以有選擇地閱讀某些章節。在閱讀過程中,最好能動手做一做書中描述的實驗。做這些實驗的門檻並不高,但效果非常好,既可以 讓你直觀地領會Windows內部的一些設計與實現,也可以積累一些洞察Windows內部活動的方法,這些方法對於排查Windo

ws平臺上出現的問題 往往很有幫助。 我與本書的淵源是從第4版(針對Windows XP/Server 2003)開始的,後來第5版(針對Windows Vista/Server 2008)錯過了出版週期,直至這次第6版又有機會翻譯。這三個版本,連同後來的第7版(針對Windows 10/Server 2016)都採用同樣的敘述框架,只是針對最新的Windows版本做了更新。本書講述的內容,雖然是針對Windows 7/Server 2008 R2,但更新幅度較大,尤其是有關64位元系統的介紹,有較多新內容。即使讀者已經在Windows 8或者Windows 10上工作,本書中的內容仍然對你

有價值。另外,如果讀者不滿足于本書Windows系統機理的系列介紹,而希望進一步理解Windows作業系統的源代 碼實現以及內核中的各種基礎演算法,則推薦閱讀另一本書《Windows內核原理與實現》,這是我在Windows XP/Server 2003 SP1內核代碼基礎上寫作的一本講解Windows內核的書,它幾乎將Windows內核大白於天下。 最後,我要特別感謝范德成先生,他在我第4版譯稿的基礎上,更新到了第6版。也要感謝電子工業出版社的編輯劉皎,依然把第6版的翻譯工作交給了我,使我有機會彌補第5版中文版未能出版之缺憾。 潘愛民 2018年1月於杭州 譯者序二 微軟的Windows

作業系統歷經三十年左右的發展,早已成為一個博大精深的桌面及伺服器作業系統,並在市場上獲得了很大的成功。但近十年來,以亞馬遜、穀 歌、Facebook等為代表的互聯網企業在市場和技術兩方面開疆拓土,極大地推動了移動設備、雲計算、大資料和人工智慧等行業的發展,顯著影響了包括微 軟在內的各大傳統軟體巨頭的發展態勢。繼2006年亞馬遜提出雲計算之後,微軟於2008年首度公開Azure虛擬機器雲平臺,SAP也在2012年公開其 應用程式雲平臺。儘管各種新的技術不斷湧現,但本書的定位焦點仍然在Windows作業系統本身,在我看來,這本書的價值依然很高,因為技術的本源有共通 性,Windows作業系統又可謂

是微軟技術的中流砥柱——微軟的Azure雲平臺的作業系統就是基於Windows開發的,其上運行的虛擬機器管理器正是 最早在Windows Server 2008中發佈的Hyper-V。 如果你對Windows作業系統有著濃厚的興趣,自然不應該錯過本書。如 果你是分散式系統架構師,也同樣能從本書中受益。這是因為,分散式系統和作業系統在許多方面都有著或多或少的相似性,對作業系統設計原理的掌握自然會對分 布式系統的設計有重大啟發和幫助。比如,作業系統的執行緒調度和分散式系統的負載均衡、作業系統的磁片緩存和分散式系統的緩存設計、作業系統的檔案系統和分 布式系統的檔案系統、虛擬機器管理器的VLAN和分

散式系統的軟體定義網路(SDN)、作業系統的效能監視器與分散式系統伺服器的性能監視平臺等之間都有不少相似性。 以交易處理為例,Windows Vista中引入了KTM(內核事務管理器,參見本書第12章),它所實現的事務的隔離級別類似於資料庫的READ COMMITTED級別,是一種幾乎所有SQL資料庫都會實現的隔離級別;而分散式系統中的Paxos共識演算法所能實現的分散式事務,其隔離級別也類似於 READ COMMITTED。又以磁片緩存為例(參見本書第11章),作業系統的磁片緩存是強一致性的,而分散式系統緩存可以做成應用伺服器內的,或者是專門的緩 存層,前一種實現對負載均衡調度有特殊要求,

而普通的負載均衡會大大降低緩存命中率從而導致系統性能低下,後一種實現則在網路延遲上稍差些。兩種實現都要 考慮是做成強一致性的還是最終一致性的,前者需要在寫的同時更新緩存,後者則需要自動淘汰舊的緩存資料。緩存的細微性也很重要,細微性過小可能導致索引資料量 過大,這和作業系統磁片緩存的原理是類似的。所以,理解作業系統的知識能拓展眼界,進而對基於這些系統的設計產生正面影響。 此外,理解作業系統的 行為有助於設計性能更高的分散式程式。比如,瞭解作業系統磁片緩存的原理,有助於設計出高性能的物件存儲服務——可以想辦法提高物件存儲在作業系統上的緩 存命中率,或者在必要時禁用作業系統緩存而改為自己實現緩存機制

。又如,瞭解作業系統網路棧的工作模式,有助於編寫做高速網路傳輸的程式,甚至可以深入驅 動程式層面做進一步的性能優化。 我是Windows作業系統的深度使用者,學習和研究了包括Windows、Linux、FreeBSD、 OpenBSD在內的多種作業系統。從1995年首次接觸Windows 3.1開始,就與Windows結下了不解之緣。陸續使用過Windows 3.1、Windows 95、Windows 98、Windows ME、Windows NT 4.0、Windows 2000、Windows XP、Windows Vista、Windows 7、Windows 8、Windows 8

.1和Windows 10等各個版本,還接觸過Windows Server 2000、Windows Server 2003、Windows Server 2008、Windows Server 2008 R2等伺服器版本,以及其上的Microsoft Virtual PC、Virtual Server和Hyper-V虛擬化技術。我會好奇它們有著怎樣的功能和性能,底層是怎樣工作的,為什麼這樣設計而不是那樣設計的;正是因為這種好奇,所 以Windows Internals一直是我十分感興趣的一本書。在完成本書上冊的翻譯工作後,我寫了一篇後記。2012年,當好友高博打電話告訴我有機會參與《深入解析

Windows作業系統》第6版的翻譯時,我非常欣喜。在高博的引薦下,我首次見到了仰慕已久的潘愛民老師。因此我非常感謝高博的引薦和潘愛民老師的認 可,感謝電子工業出版社的劉皎和白濤兩位編輯,本書的出版離不開他們的策劃和編輯。 范德成 2018年1月於上海浦東張江 引言 《深入解析Windows作業系統(第6版)》的讀者物件是那些想要理解Microsoft Windows 7和Windows Server 2008 R2作業系統的核心元件內部工作機理的高級電腦專業人員(包括開發人員和系統管理員)。開發人員利用這些知識,可以在構建Windows平臺上的應用程 序時更好地理解各種設計決策背後的基

本原理,調試複雜的問題。系統管理員也可以從這些資訊中獲益,因為理解了

余登發與戰後臺灣民主運動

為了解決i網棧監視器的問題,作者吳丞祐 這樣論述:

余登發是高雄黑派的祖師爺,第一位黨外縣長,被視為是戰後臺灣黨外運動的重要領袖。余登發創造臺灣第一個政治家族,領導家族三代參與的選戰近三十場,當選率在七成以上,顯示余家多次當選縣長、立法委員、省議員、縣議員,形成高雄縣一股不可忽視的地方勢力與政治實力。余登發不但為戰後民主黨外運動的先驅者,其施政作風於臺灣政治發展亦具代表性,並在高雄政壇締造紮實的群眾基礎與深遠的影響力。 余登發能在高雄縣的地方政壇長期獲得民眾廣泛的支持,有論者認為有以下幾個主要原因:(一)傳統社會「家長」的心態;(二)具有傳統農民勤勞的習慣、平易近人的作風;(三)個性耿介,不畏權勢。筆者以為大筆土地資產、採取體制

內的改革也是其中原因;這五項因素緊密配合,缺一不可。 余登發參與戰後臺灣民主運動兩次的組黨之民主運動。在1960年第一波「中國民主黨」組黨運動中,余或許擔心高雄縣長一職身分敏感,被國民黨處分,在籌組過程中,似乎未積極的表現。不久國民黨逮捕雷震等人,使得新黨無疾而終。在1970年代後期第二波「黨外助選團」之民主運動中,一開始余登發婉拒出任「黨外助選團團長」,到臺美斷交後,接下黨外領導權,並領銜簽署「黨外人士國是聲明」,「被動地」成為黨外精神領袖。 國民黨政府為了阻止黨外運動發展,製造吳泰安匪諜案,牽連余登發,使其成為階下囚,讓黨外陣營以余登發作為最高領導人的計畫遭到挫敗。黨外人士舉行

「橋頭遊行」示威,抗議逮捕余登發父子,打破三十多年戒嚴時期的禁忌,跨出臺灣民主運動的一大步。桃園縣長許信良因參與遊行,受到停職處分。黨外人士與海外臺灣人團體、國際人權團體攜手合作,參與救援余登發、聲援許信良停職的運動。 1979年底美麗島事件爆發,國民黨政府為抒解升高的對峙氣氛,1980年2月5日同意余登發保外就醫。觀察余登發案之後續發生之創辦〈美麗島雜誌〉、中泰賓館事件、美麗島事件、1980年代起第二波籌組新黨等連鎖效應,余案可謂為戰後臺灣政治發展的轉捩點。保外就醫後,余登發的一舉一動仍受到情治當局的嚴密監控,直到1986年12月「機場事件」都未曾停止。 1989年9月13日,余登

發死於自宅臥室的血泊中,死因是「他殺」或「意外死亡」,則未有定論。余登發命案繼陳文成命案、林宅血案,成為臺灣政治史上無解的懸案,也是臺灣解嚴後的第一宗政治命案;同時結束了余登發富有傳奇色彩的一生。